• Title/Summary/Keyword: medicinal substances

Search Result 219, Processing Time 0.024 seconds

Beauty food activities of Polygala japonica Houtt. (영신초(Polygala japonica Houtt.)의 미용 식품 활성)

  • Kim, Ye-Jin;Park, Beom-Su;Son, So-Young;Yun, Ja-Young;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.1
    • /
    • pp.51-57
    • /
    • 2018
  • The objective of this study was to identify beauty food activity of Polygala japonica Houtt., which were widely used as a folk medicinal plant to treat inflammatory diseases. Both hot water and 50% ethanol extract of P. japonica Houtt. were evaluated for their anti-oxidant, whitening, anti-wrinkle and anti-inflammatory effect based on their phenolic concentration. To measure anti-oxidant activity, four experiments were carried out. 1,1-diphenyl-3-picrylhydrazyl, 2,2-azinobis (3-ethylbenzothia-zoline-6-sulfonic acid) and thiobarbituric acid reactive substances all showed more than 80% efficacy in both hot water and 50% ethanol extract of P. japonica Houtt. and likewise antioxidant protection factor value more than 2. To investigate the whitening effect of P. japonica Houtt., the inhibition effect of tyrosinase on hot water and 50% ethanol extract was inhibited by 12.46 and 22.10%, respectively. To examine the anti-wrinkle effect, the inhibition effect of elastase and collagenase on hot water and 50% ethanol extract were inhibited by 28.28, 58.36% and 59.73, 78.90% respectively. To investigate the anti-inflammatory effect and moisturizing effect by hyaluronidase inhibitory effect, hot water and 50% ethanol extract were 35.65 and 86.80%, respectively. The result of all the above experiments show values at a concentration of $200{\mu}g/mL$, and based on these experimental results, P. japonica Houtt. can be expected as a functional material in beauty foods.

Antioxidant activity and anti-tumor immunity by Propolis in mice

  • Choi, In-Sook;Itokawa, Yuka;Maenaka, Toshihiro;Yamashita, Takenori;Mitsumoto, Morihide;Tano, Kaoru;Kondo, Hiroyo;Ishida, Torao;Nakamura, Takashi;Saito, Kiyoto;Terai, Kaoru;Monzen, Hajime;Oshima, Masami;Takeuchi, Tetsuo;Mituhana, Yuicti;Bamen, Kenichi;Ahn, Kyoo-Seok;Gu, Yeun-Hwa
    • Advances in Traditional Medicine
    • /
    • v.5 no.2
    • /
    • pp.100-109
    • /
    • 2005
  • In South America, natural products with unknown drug effects are used as folk remedies and for preventive medicine. Among South American natural products, we directed our attention to Propolis, which have been known as medicinal plants, and examined the mechanisms by which these substances affect antioxidant activity, anti-tumor activity and immunoresponse. When the antioxidant activities of Propolis were examined by the DPPH and Rhoudan iron methods, since Propolis contains high levels of flavonoids, it is thought that flavonoids may be responsible for the antioxidant activity in this study. In the examination of immunoenhancement activity, we measured lymphocyte versus polymorphonuclear leukocyte ratios (L/P activity). The number of lymphocytes was significantly increased in groups treated with Proplolis. Specifically, slightly high levels of $IFN-{\gamma}$ were measured in mice bearing the S-180 carcinoma, after administration of Propolis. This strongly suggests that cellular immunity is especially activated by treatment with Propolis, because production of $IFN-{\alpha}$ is limited to the T cells and NK cells stimulated by mitogen and sensitized antigen. $TNF-{\alpha}$ shows a different extent and mechanism of action depending on the target cells. When $TNF-{\alpha}$ was measured in mice bearing the S-180 carcinoma, mice treated with Propolis showed slightly higher $TNF-{\alpha}$ levels as compared to the control group. This suggests that activated macrophages produce $TNF-{\alpha}$ in mice treated with Prapolis, since activated macrophages and lymphocytes are the source of most $TNF-{\alpha}$. When anti-tumor action was examined using two kinds of sarcoma (Ehrlich solid carcinoma and Sarcoma-180 carcinoma), tumor-suppressive ratios after treatment with Propolis was 29.1%. When Sarcoma-180 solid carcinoma was used, tumor-suppressive ratios were 62%. Thus, Propolis showed strong anti-tumor activity against two kinds of solid carcinoma. Taken altogether, this strongly suggests that Propolis enhances original functions of macrophages and NK cells, and as a result, secondarily enhances the immune reaction and suppresses tumor growth.

Biological Control of Fusarium Head Blight on Wheat by Polyacetylenes Derived from Cirsium japonicum Roots (대계근에서 분리한 Polyacetylene계 화합물을 이용한 밀 이삭마름병 방제)

  • Kim, Ji-In;Kim, Kihyun;Park, Ae Ran;Choi, Gyung Ja;Park, Hae Woong;Kim, In Seon;Kim, Jin-Cheol
    • Research in Plant Disease
    • /
    • v.22 no.3
    • /
    • pp.145-151
    • /
    • 2016
  • Chemical fungicides have reduced Fusarium head blight (FHB) severity. However, by the effects of fungicide residues, they can only be used up to 30 days before time of harvest. Therefore, the development of new biofungicides that are applicable until harvest is required. In order to select plant extracts having antifungal activity against Fusarium graminearum for the control of FHB, we investigated the inhibitory effects of 225 medicinal plant extracts on spore germination of F. graminearum. Of these plant extracts, the methanol extract of Cirsium japonicum (CJ) roots showed the strongest antifungal activity. Through solvent partitioning, repeated column chromatography, and spore germination bioassay, two chemicals were purified and then their chemical structures were identified as ciryneol C (CC) and 1-heptadecene-11,13-diyne-8,9,10-triol (HD-ol) which are polyacetylene substances. Two active compounds effectively inhibited the germination of F. graminearum macroconidia; HD-ol ($IC_{50}$ of $3.17{\mu}g/ml$) showed stronger spore germination inhibitory activity than that of CC ($IC_{50}$ of $28.14{\mu}g/ml$). In addition, the wettable powder type formulation of ethyl acetate extract of CJ roots suppressed the development of FHB in dose-dependent manner, with control values of 78.92% and 31.56% at 250- and 500-fold dilutions, respectively. Combining these findings suggest that the crude extract of CJ roots containing polyacetylene compounds could be used as botanical fungicide for the control of FHB.

Comparative Molecular Phylogenetic Relationships in Different Strains of Pleurotus spp. (느타리속 버섯 계통의 분자생물학적 유연관계의 비교연구)

  • Cho, Hae-Jin;Lee, Jae-Seong;Yoon, Ki-Nam;Alam, Nuhu;Lee, Kyung-Lim;Shim, Mi-Ja;Lee, Min-Woong;Cheong, Jong-Chun;Shin, Pyung-Gyun;Yoo, Young-Bok;Lee, U-Youn;Lee, Tae-Soo
    • The Korean Journal of Mycology
    • /
    • v.38 no.2
    • /
    • pp.112-119
    • /
    • 2010
  • Pleurotus spp. have been used for edible and medicinal purposes in Asian countries for a long time. The fruiting bodies of the Pleurotus ostreatus, Pleurotus citrinopileatus and Pleurotus salmoneostramineus contained many physiologically beneficial substances for human health. Therefore, it is necessary to study the genetic diversity of Pleurotus mushroom cultivars commercially cultivated in Korea. Eleven strains of Pleurotus spp. were collected from different geographical regions in South-East Asia and ITS regions of rDNA and RAPD of genomic DNA were analyzed. The size of the ITS1 and ITS2 regions of rDNA from the different strains varied from 167 to 254 bp and 156 to 213 bp, respectively. The sequence of ITS1 was more variable than that of ITS2, and the 5.8S sequences were identical. A phylogenetic tree based on the ITS region sequences indicated that selected strains could be classified into 4 clusters. Eleven Pleurotus species were also analyzed by RAPD with 20 arbitrary primers. Ten of these primers were efficiently amplified the genomic DNA. The number of amplified bands varied with the primers and strains, with polymorphic fragments in the range from 0.1 to 2.0kb. The results revealed that genetic diversity of selected strains of P. ostreatus, P. citrinopileatus and P. salmoneostramineus is low.

Studies on the Shelf-life Extension of Jeotkal, Salted and Fermented Seafood (젓갈류의 유통기한 연장을 위한 연구)

  • Cho, Hak-Rae;Park, Uk-Yeon;Chang, Dong-Suck
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.4
    • /
    • pp.652-660
    • /
    • 2002
  • To develop natural food preservatives for extending the shelf-life of jeotkal (salted and fermented seafood), antimicrobial substances were extracted from 32 types of medicinal herbs and edible plants using 95% ethanol. Among the extracts, Glycyrrhizae radix, Curcumae domestica, Galla rhois, and Resina pini showed relatively high inhibitory effects on the growth of the microorganisms isolated from the deteriorated jeotkal. We selected and tested the extract from Recina pini as a natural jeotkal preservative. This ethanol extract was purified partially by adding equal quantity of water, through which 77% of insoluble materials were removed as impurities. In manufacturing modified jeotkal using squid, sucrose and starch syrup were substituted with sorbitol, $glucono-{\delta}-lactone$ was added instead of vitamin C and lactic acid, and sterilized hot pepper was used instead of natural one. The shelf-life of modified jeotkal was prolonged by 4 days compared with the control jeotkal when stored at $20^{\circ}C$, while that of modified jeotkal containing 1.0% partially purified Recina pini extract was prolonged by 6 days compared to the control. The same tests were conducted for the changran (stomach and intestine of Alaska pollack) jeotkal preservation. The shelf-life of the control jeotkal was 24 days, whereas the modified jeotkal and the Resina pini extract-containing modified jeotkal maintained their qualities without changes in microbial and chemical characteristics for 90 days at $20^{\circ}C$ storage.

Development of New Natural Antioxidants for Cosmeceuticals (천연물 유래 항산화 기능성 화장품 신소재 개발)

  • Yoo, Ick-Dong;Kim, Jong-Pyung;Kim, Won-Gon;Yun, Bong-Sik;Ryoo, In-Ja
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.31 no.4 s.54
    • /
    • pp.349-357
    • /
    • 2005
  • New antioxidative substances for cosmeceuticals were screened from natural resources such as microbial metabolites, mushrooms, and medicinal plants. Four antioxidants were isolated from the fungal metabolite of Eupenicillium shearii and their structures were determined to be new phenolic compounds. The compounds were designated as melanocins A, B, C, and D. Melanocins $A{\sim}D$ exhibited free radical scavenging activity on DPPH and superoxide with $EC_{50}$ values of $21{\sim}94\;and\;7{\sim}84{\mu}M$, respectively, which were stronger activity than those of ${\alpha}-tocopherol$ and BHA. Melanocin A showed anti-wrinkle effects on the UV-irrated hairless mouse skin. A novel hispidin antioxidative compound designated as inoscavin A was isolated from the fruiting body of the mushroom, Inonotus xeranticus. Inoscavin A scavenged superoxide radical with $EC_{50}$ values of $0.03{\mu}g/mL$, and inhibited rat liver microsomal lipid peroxidation with $EC_{50}$ values of $0.3{\mu}g/mL$. Benzastatins $A{\sim}G$, the novel antioxidants isolated from the culture of Streptomyces nitrosporeus showed potent lipid peroxidation inhibitory activity with $EC_{50}$ values of $3{\sim}30{\mu}M$. A cyclopentene compound with strong hypopigmentary effect was isolated from the fungal metabolite of Penicillium sp. and identifed as terrein. Terrein significantly reduced melanin levels in a melanomacyte cell line, Mel-Ab. It showed 10 times stronger activity than kojic acid, but exhibited no cytotoxic effect even in $100{\mu}M$. It was suggested that terrein reduced melanin synthesis by reducing tyrosinase production by MITF down-regulation.

Anti-inflammatory effects of fruit and leaf extracts of Lycium barbarum in lipopolysaccharide-stimulated RAW264.7 cells and animal model (염증유도 RAW264.7 세포와 동물모델에서 구기자와 구기엽의 항염 효능)

  • Bae, Su-Mi;Kim, Ji-Eun;Bae, Eun-Young;Kim, Kyung-Ah;Ly, Sun Yung
    • Journal of Nutrition and Health
    • /
    • v.52 no.2
    • /
    • pp.129-138
    • /
    • 2019
  • Purpose: Medicinal herbs have recently attracted attention as health beneficial foods and source materials for drug development. Recent studies have demonstrated that extracts of Lycium's fruits and roots have a range of physiologically active substances. The extract of Lycium's leaves has been reported to have excellent anti-oxidant and anti-microbial activity, but its anti-inflammatory efficacy is not known. The chlorophyll present in the leaves can act as an anti-oxidant or pro-oxidant depending on the presence of light. Therefore, this study analyzed the anti-inflammatory effects of Lycium's fruit extract (LFE), leaf extract (LLE), and leaf extract with chlorophyll removal (LLE with CR). Methods: This study examined the inhibitory effects of LFE, LLE, and LLE with CR on pro-inflammatory mediator production as well as on the expression of iNOS and COX-2 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and BALB/c mice. Results: LFE, LLE, and LLE with CR inhibited the production of pro-inflammatory mediators (NO, $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) and the expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. Furthermore, the administration of LLE and LLE with CR inhibited the serum pro-inflammatory cytokine levels and suppressed DNA damage in BALB/c mice. In particular, LLE with CR exhibited the highest anti-inflammatory activity. Conclusion: These results suggest that the fruit and leaves of Lycium are potential therapeutic agents against inflammation.

A Study of The Medical Classics in the '$\bar{A}yurveda$' ('아유르베다'($\bar{A}yurveda$)의 의경(醫經)에 관한 연구)

  • Kim, Ki-Wook;Park, Hyun-Kuk;Seo, Ji-Young
    • Journal of Korean Medical classics
    • /
    • v.20 no.4
    • /
    • pp.91-117
    • /
    • 2007
  • Through a simple study of the medical classics in the '$\bar{A}yurveda$', we have summarized them as follows. 1) Traditional Indian medicine started in the Ganges river area at about 1500 B. C. E. and traces of medical science can be found in the "Rigveda" and "Atharvaveda". 2) The "Charaka" and "$Su\acute{s}hruta$(妙聞集)", ancient texts from India, are not the work of one person, but the result of the work and errors of different doctors and philosophers. Due to the lack of historical records, the time of Charaka or $Su\acute{s}hruta$(妙聞)s' lives are not exactly known. So the completion of the "Charaka" is estimated at 1st${\sim}$2nd century C. E. in northwestern India, and the "$Su\acute{s}hruta$" is estimated to have been completed in 3rd${\sim}$4th century C. E. in central India. Also, the "Charaka" contains details on internal medicine, while the "$Su\acute{s}hruta$" contains more details on surgery by comparison. 3) '$V\bar{a}gbhata$', one of the revered Vriddha Trayi(triad of the ancients, 三醫聖) of the '$\bar{A}yurveda$', lived and worked in about the 7th century and wrote the "$A\d{s}\d{t}\bar{a}nga$ $A\d{s}\d{t}\bar{a}nga$ $h\d{r}daya$ $sa\d{m}hit\bar{a}$ $samhit\bar{a}$(八支集)" and "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$(八心集)", where he tried to compromise and unify the "Charaka" and "$Su\acute{s}hruta$". The "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$" was translated into Tibetan and Arabic at about the 8th${\sim}$9th century, and if we generalize the medicinal plants recorded in each the "Charaka", "$Su\acute{s}hruta$" and the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$", there are 240, 370, 240 types each. 4) The 'Madhava' focused on one of the subjects of Indian medicine, '$Nid\bar{a}na$' ie meaning "the cause of diseases(病因論)", and in one of the copies found by Bower in 4th century C. E. we can see that it uses prescriptions from the "BuHaLaJi(布哈拉集)", "Charaka", "$Su\acute{s}hruta$". 5) According to the "Charaka", there were 8 branches of ancient medicine in India : treatment of the body(kayacikitsa), special surgery(salakya), removal of alien substances(salyapahartka), treatment of poison or mis-combined medicines(visagaravairodhikaprasamana), the study of ghosts(bhutavidya), pediatrics(kaumarabhrtya), perennial youth and long life(rasayana), and the strengthening of the essence of the body(vajikarana). 6) The '$\bar{A}yurveda$', which originated from ancient experience, was recorded in Sanskrit, which was a theorization of knowledge, and also was written in verses to make memorizing easy, and made medicine the exclusive possession of the Brahmin. The first annotations were 1060 for the "Charaka", 1200 for the "$Su\acute{s}hruta$", 1150 for the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$", and 1100 for the "$Nid\bar{a}na$", The use of various mineral medicines in the "Charaka" or the use of mercury as internal medicine in the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$", and the palpation of the pulse for diagnosing in the '$\bar{A}yurveda$' and 'XiZhang(西藏)' medicine are similar to TCM's pulse diagnostics. The coexistence with Arabian 'Unani' medicine, compromise with western medicine and the reactionism trend restored the '$\bar{A}yurveda$' today. 7) The "Charaka" is a book inclined to internal medicine that investigates the origin of human disease which used the dualism of the 'Samkhya', the natural philosophy of the 'Vaisesika' and the logic of the 'Nyaya' in medical theories, and its structure has 16 syllables per line, 2 lines per poem and is recorded in poetry and prose. Also, the "Charaka" can be summarized into the introduction, cause, judgement, body, sensory organs, treatment, pharmaceuticals, and end, and can be seen as a work that strongly reflects the moral code of Brahmin and Aryans. 8) In extracting bloody pus, the "Charaka" introduces a 'sharp tool' bloodletting treatment, while the "$Su\scute{s}hruta$" introduces many surgical methods such as the use of gourd dippers, horns, sucking the blood with leeches. Also the "$Su\acute{s}hruta$" has 19 chapters specializing in ophthalmology, and shows 76 types of eye diseases and their treatments. 9) Since anatomy did not develop in Indian medicine, the inner structure of the human body was not well known. The only exception is 'GuXiangXue(骨相學)' which developed from 'Atharvaveda' times and the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$". In the "$A\d{s}\d{t}\bar{a}nga$ Sangraha $samhit\bar{a}$"'s 'ShenTiLun(身體論)' there is a thorough listing of the development of a child from pregnancy to birth. The '$\bar{A}yurveda$' is not just an ancient traditional medical system but is being called alternative medicine in the west because of its ability to supplement western medicine and, as its effects are being proved scientifically it is gaining attention worldwide. We would like to say that what we have researched is just a small fragment and a limited view, and would like to correct and supplement any insufficient parts through more research of new records.

  • PDF

A Study of The Medical Classics in the '$\bar{A}yurveda$' (아유르베다'($\bar{A}yurveda$) 의경(醫經)에 관한 연구)

  • Kim, Kj-Wook;Park, Hyun-Kuk;Seo, Ji-Young
    • The Journal of Dong Guk Oriental Medicine
    • /
    • v.10
    • /
    • pp.119-145
    • /
    • 2008
  • Through a simple study of the medical classics in the '$\bar{A}yurveda$', we have summarized them as follows. 1) Traditional Indian medicine started in the Ganges river area at about 1500 B. C. E. and traces of medical science can be found in the "Rigveda" and "Atharvaveda". 2) The "Charaka(閣羅迦集)" and "$Su\acute{s}hruta$(妙聞集)", ancient texts from India, are not the work of one person, but the result of the work and errors of different doctors and philosophers. Due to the lack of historical records, the time of Charaka(閣羅迦) or $Su\acute{s}hruta$(妙聞)s' lives are not exactly known. So the completion of the "Charaka" is estimated at 1st$\sim$2nd century C. E. in northwestern India, and the "$Su\acute{s}hruta$" is estimated to have been completed in 3rd$\sim$4th century C. E. in central India. Also, the "Charaka" contains details on internal medicine, while the "$Su\acute{s}hruta$" contains more details on surgery by comparison. 3) '$V\bar{a}gbhata$', one of the revered Vriddha Trayi(triad of the ancients, 三醫聖) of the '$\bar{A}yurveda$', lived and worked in about the 7th century and wrote the "$Ast\bar{a}nga$ $Ast\bar{a}nga$ hrdaya $samhit\bar{a}$ $samhit\bar{a}$(八支集) and "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$(八心集)", where he tried to compromise and unify the "Charaka" and "$Su\acute{s}hruta$". The "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$" was translated into Tibetan and Arabic at about the 8th$\sim$9th century, and if we generalize the medicinal plants recorded in each the "Charaka", "$Su\acute{s}hruta$" and the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$", there are 240, 370, 240 types each. 4) The 'Madhava' focused on one of the subjects of Indian medicine, '$Nid\bar{a}na$' ie meaning "the cause of diseases(病因論)", and in one of the copies found by Bower in 4th century C. E. we can see that it uses prescriptions from the "BuHaLaJi(布唅拉集)", "Charaka", "$Su\acute{s}hruta$". 5) According to the "Charaka", there were 8 branches of ancient medicine in India : treatment of the body(kayacikitsa), special surgery(salakya), removal of alien substances(salyapahartka), treatment of poison or mis-combined medicines(visagaravairodhikaprasamana), the study of ghosts(bhutavidya), pediatrics(kaumarabhrtya), perennial youth and long life(rasayana), and the strengthening of the essence of the body(vajikarana). 6) The '$\bar{A}yurveda$', which originated from ancient experience, was recorded in Sanskrit, which was a theorization of knowledge, and also was written in verses to make memorizing easy, and made medicine the exclusive possession of the Brahmin. The first annotations were 1060 for the "Charaka", 1200 for the "$Su\acute{s}hruta$", 1150 for the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$", and 1100 for the "$Nid\bar{a}na$". The use of various mineral medicines in the "Charaka" or the use of mercury as internal medicine in the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$", and the palpation of the pulse for diagnosing in the '$\bar{A}yurveda$' and 'XiZhang(西藏)' medicine are similar to TCM's pulse diagnostics. The coexistence with Arabian 'Unani' medicine, compromise with western medicine and the reactionism trend restored the '$\bar{A}yurveda$' today. 7) The "Charaka" is a book inclined to internal medicine that investigates the origin of human disease which used the dualism of the 'Samkhya', the natural philosophy of the 'Vaisesika' and the logic of the 'Nyaya' in medical theories, and its structure has 16 syllables per line, 2 lines per poem and is recorded in poetry and prose. Also, the "Charaka" can be summarized into the introduction, cause, judgement, body, sensory organs, treatment, pharmaceuticals, and end, and can be seen as a work that strongly reflects the moral code of Brahmin and Aryans. 8) In extracting bloody pus, the "Charaka" introduces a 'sharp tool' bloodletting treatment, while the "$Su\acute{s}hruta$" introduces many surgical methods such as the use of gourd dippers, horns, sucking the blood with leeches. Also the "$Su\acute{s}hruta$" has 19 chapters specializing in ophthalmology, and shows 76 types of eye diseases and their treatments. 9) Since anatomy did not develop in Indian medicine, the inner structure of the human body was not well known. The only exception is 'GuXiangXue(骨相學)' which developed from 'Atharvaveda' times and the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$". In the "$Ast\bar{a}nga$ Sangraha $samhit\bar{a}$"'s 'ShenTiLun(身體論)' there is a thorough listing of the development of a child from pregnancy to birth. The '$\bar{A}yurveda$' is not just an ancient traditional medical system but is being called alternative medicine in the west because of its ability to supplement western medicine and, as its effects are being proved scientifically it is gaining attention worldwide. We would like to say that what we have researched is just a small fragment and a limited view, and would like to correct and supplement any insufficient parts through more research of new records.

  • PDF