DOI QR코드

DOI QR Code

Anti-inflammatory effects of fruit and leaf extracts of Lycium barbarum in lipopolysaccharide-stimulated RAW264.7 cells and animal model

염증유도 RAW264.7 세포와 동물모델에서 구기자와 구기엽의 항염 효능

  • Bae, Su-Mi (Department of Food and Nutrition, Chungnam National University) ;
  • Kim, Ji-Eun (Department of Food and Nutrition, Chungnam National University) ;
  • Bae, Eun-Young (Department of Food and Nutrition, Chungnam National University) ;
  • Kim, Kyung-Ah (Department of Food and Nutrition, Chungnam National University) ;
  • Ly, Sun Yung (Department of Food and Nutrition, Chungnam National University)
  • Received : 2018.11.26
  • Accepted : 2019.02.12
  • Published : 2019.04.30

Abstract

Purpose: Medicinal herbs have recently attracted attention as health beneficial foods and source materials for drug development. Recent studies have demonstrated that extracts of Lycium's fruits and roots have a range of physiologically active substances. The extract of Lycium's leaves has been reported to have excellent anti-oxidant and anti-microbial activity, but its anti-inflammatory efficacy is not known. The chlorophyll present in the leaves can act as an anti-oxidant or pro-oxidant depending on the presence of light. Therefore, this study analyzed the anti-inflammatory effects of Lycium's fruit extract (LFE), leaf extract (LLE), and leaf extract with chlorophyll removal (LLE with CR). Methods: This study examined the inhibitory effects of LFE, LLE, and LLE with CR on pro-inflammatory mediator production as well as on the expression of iNOS and COX-2 in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and BALB/c mice. Results: LFE, LLE, and LLE with CR inhibited the production of pro-inflammatory mediators (NO, $TNF-{\alpha}$, IL-6, and $IL-1{\beta}$) and the expression of iNOS and COX-2 in LPS-stimulated RAW 264.7 cells in a dose-dependent manner. Furthermore, the administration of LLE and LLE with CR inhibited the serum pro-inflammatory cytokine levels and suppressed DNA damage in BALB/c mice. In particular, LLE with CR exhibited the highest anti-inflammatory activity. Conclusion: These results suggest that the fruit and leaves of Lycium are potential therapeutic agents against inflammation.

구기자 나무의 열매와 잎, 클로로필 제거 잎의 에탄올 추출물들의 항염 효능을 확인하여 항염 기능성 소재로의 적용 가능성을 알아보고자 하였다. 효능 측정은 세포단위와 동물실험을 통하여 실시하였다. RAW264.7 세포에서는 LPS와 동시에 추출물 (LFE, LLE, LLE with CR)을 처리한 세포에서 NO와 $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ 생성량 및 iNOS와 COX-2의 발현을 측정하였고, 동물실험에서는 7일간 추출물들 (LLE, LLE with CR)을 경구투여한 BALB/c mice에 LPS를 투여하여 염증을 유도한 후 혈청의 $TNF-{\alpha}$, IL-6, $IL-1{\beta}$ 농도와 DNA fragmentation을 측정하였다. RAW264.7 세포에 처리한 추출물들은 모두 $1,000{\mu}g/mL$의 농도까지 세포증식능에 영향을 주지 않아 안전한 것으로 확인되었다. LPS와 추출물을 처리한 세포로부터 생성된 NO와 $TNF-{\alpha}$, IL-6, $IL-1{\beta}$는 모두 유의하게 억제되었고 구기자 추출물에 비하여 구기엽 추출물들의 영향이 더 크게 나타났다 (p < 0.05). 또한 세포의 iNOS와 COX-2의 단백질 발현도 구기자< 구기엽< 클로로필 제거 구기엽의 순으로 억제됨을 확인할 수 있었다. BALB/c mice 동물모델에서 구기엽 추출물들의 항염 효능을 측정한 결과, 혈청 $TNF-{\alpha}$, IL-6, $IL-1{\beta}$의 농도는 구기엽 추출물 및 클로로필 제거 구기엽 추출물 투여군에서 감소하였으며 그 효과는 클로로필 제거 구기엽군에서 더 크게 나타났다. 구기엽 추출물둘은 DNA 손상보호효과를 유의하게 보였으나 두 군 간에는 차이가 없었다. 따라서 구기엽 추출물과 클로로필 제거 구기엽 추출물은 항염효능을 가진 천연 소재로 활용되어 기능성 식품 및 화장품 개발에서 활용될 수 있으므로 구기자 나무의 부가가치를 높일 수 있을 것으로 생각된다.

Keywords

References

  1. Zedler S, Faist E. The impact of endogenous triggers on trauma-associated inflammation. Curr Opin Crit Care 2006; 12(6): 595-601. https://doi.org/10.1097/MCC.0b013e3280106806
  2. Isomaki P, Punnonen J. Pro- and anti-inflammatory cytokines in rheumatoid arthritis. Ann Med 1997; 29(6): 499-507. https://doi.org/10.3109/07853899709007474
  3. Vane JR, Mitchell JA, Appleton I, Tomlinson A, Bishop-Bailey D, Croxtall J, et al. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc Natl Acad Sci U S A 1994; 91(6): 2046-2050. https://doi.org/10.1073/pnas.91.6.2046
  4. Higuchi M, Higashi N, Taki H, Osawa T. Cytolytic mechanisms of activated macrophages. Tumor necrosis factor and Larginine- dependent mechanisms act synergistically as the major cytolytic mechanisms of activated macrophages. J Immunol 1990; 144(4): 1425-1431.
  5. Nathan C. Nitric oxide as a secretory product of mammalian cells. FASEB J 1992; 6(12): 3051-3064. https://doi.org/10.1096/fasebj.6.12.1381691
  6. Guzik TJ, Korbut R, Adamek-Guzik T. Nitric oxide and superoxide in inflammation and immune regulation. J Physiol Pharmacol 2003; 54(4): 469-487.
  7. Zhang R, Kang KA, Piao MJ, Kim KC, Kim AD, Chae S, et al. Cytoprotective effect of the fruits of Lycium chinense Miller against oxidative stress-induced hepatotoxicity. J Ethnopharmacol 2010; 130(2): 299-306. https://doi.org/10.1016/j.jep.2010.05.007
  8. Kim TS, Park WJ, Ko SB, Kang MH. Development of extracts of Lycii folium having high antioxidant activity. J Korean Soc Food Sci Nutr 2008; 37(10): 1318-1322. https://doi.org/10.3746/jkfn.2008.37.10.1318
  9. Xiao J, Liong EC, Ching YP, Chang RC, So KF, Fung ML, et al. Lycium barbarum polysaccharides protect mice liver from carbon tetrachloride-induced oxidative stress and necroinflammation. J Ethnopharmacol 2012; 139(2): 462-470. https://doi.org/10.1016/j.jep.2011.11.033
  10. Chen H, Olatunji OJ, Zhou Y. Anti-oxidative, anti-secretory and anti-inflammatory activities of the extract from the root bark of Lycium chinense (Cortex Lycii) against gastric ulcer in mice. J Nat Med 2016; 70(3): 610-619. https://doi.org/10.1007/s11418-016-0984-2
  11. Luo Q, Cai Y, Yan J, Sun M, Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum. Life Sci 2004; 76(2): 137-149. https://doi.org/10.1016/j.lfs.2004.04.056
  12. Mocan A, Vlase L, Vodnar DC, Bischin C, Hanganu D, Gheldiu AM, et al. Polyphenolic content, antioxidant and antimicrobial activities of Lycium barbarum L. and Lycium chinense Mill. leaves. Molecules 2014; 19(7): 10056-10073. https://doi.org/10.3390/molecules190710056
  13. Liu SC, Lin JT, Hu CC, Shen BY, Chen TY, Chang YL, et al. Phenolic compositions and antioxidant attributes of leaves and stems from three inbred varieties of Lycium chinense Miller harvested at various times. Food Chem 2017; 215: 284-291. https://doi.org/10.1016/j.foodchem.2016.06.072
  14. Albishi T, John JA, Al-Khalifa AS, Shahidi F. Antioxidative phenolic constituents of skins of onion varieties and their activities. J Funct Foods 2013; 5(3): 1191-1203. https://doi.org/10.1016/j.jff.2013.04.002
  15. Olatunde OO, Benjakul S, Vongkamjan K. Antioxidant and antibacterial properties of guava leaf extracts as affected by solvents used for prior dechlorophyllisation. J Food Biochem 2018; 42(5): e12600. https://doi.org/10.1111/jfbc.12600
  16. Park SH, Kim JM, Kim JH, Oh YS, Joo DH, Lee EY, et al. Antioxidative effects and component analysis of graviola (Annona muricata) leaf extract/fractions. J Soc Cosmet Sci Korea 2017; 43(4): 309-320. https://doi.org/10.15230/SCSK.2017.43.4.309
  17. Kim JE, Bae SM, Nam YR, Bae EY, Ly SY. Antioxidant activity of ethanol extract of Lycium barbarum's leaf with removal of chlorophyll. J Nutr Health 2019; 52(1): 26-35. https://doi.org/10.4163/jnh.2019.52.1.26
  18. Ko YE, Oh SR, Song HH, Ryu HW, Ly SY, Kim JW. The effect of $4{\alpha}$,$5{\alpha}$-epoxy-$10{\alpha}$,14-dihydro-inuviscolide, a novel immunosuppressant isolated from Carpesium abrotanoides, on the cytokine profile in vitro and in vivo. Int Immunopharmacol 2015; 25(1): 121-129. https://doi.org/10.1016/j.intimp.2015.01.002
  19. Cho HY, Noh KH, Cho MK, Jang JH, Lee MO, Kim SH, et al. Anti-oxidative and anti-inflammatory effects of genistein in BALB/c mice injected with LPS. J Korean Soc Food Sci Nutr 2008; 37(9): 1126-1135. https://doi.org/10.3746/jkfn.2008.37.9.1126
  20. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, et al. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000; 35(3): 206-221. https://doi.org/10.1002/(SICI)1098-2280(2000)35:3<206::AID-EM8>3.0.CO;2-J
  21. Oh YC, Cho WK, Im GY, Jeong YH, Hwang YH, Liang C, et al. Anti-inflammatory effect of Lycium fruit water extract in lipopolysaccharide-stimulated RAW 264.7 macrophage cells. Int Immunopharmacol 2012; 13(2): 181-189. https://doi.org/10.1016/j.intimp.2012.03.020
  22. Cho EJ, Kim YE, Lee DE, Sung NY, Byun EH, Park WJ. Comparison of the antioxidative and anti-inflammatory activities of Lycium chinense leaves and fruits extracts according to the harvest time. J Korean Soc Food Sci Nutr 2018; 47(7): 717-724. https://doi.org/10.3746/jkfn.2018.47.7.717
  23. Vilcek J, Lee TH. Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem 1991; 266(12): 7313-7316. https://doi.org/10.1016/S0021-9258(20)89445-9
  24. Olmos G, Llado J. Tumor necrosis factor alpha: a link between neuroinflammation and excitotoxicity. Mediators Inflamm 2014; 2014: 861231. https://doi.org/10.1155/2014/861231
  25. Gabay C, Lamacchia C, Palmer G. IL-1 pathways in inflammation and human diseases. Nat Rev Rheumatol 2010; 6(4): 232-241. https://doi.org/10.1038/nrrheum.2010.4
  26. Scheller J, Garbers C, Rose-John S. Interleukin-6: from basic biology to selective blockade of pro-inflammatory activities. Semin Immunol 2014; 26(1): 2-12. https://doi.org/10.1016/j.smim.2013.11.002
  27. Xie JH, Tang W, Jin ML, Li JE, Xie MY. Recent advances in bioactive polysaccharides from Lycium barbarum L., Zizyphus jujuba Mill, Plantago spp., and Morus spp.: structures and functionalities. Food Hydrocoll 2016; 60: 148-160. https://doi.org/10.1016/j.foodhyd.2016.03.030
  28. Zhu J, Zhang Y, Shen Y, Zhou H, Yu X. Lycium barbarum polysaccharides induce Toll-like receptor 2- and 4-mediated phenotypic and functional maturation of murine dendritic cells via activation of NF-${\kappa}B$. Mol Med Rep 2013; 8(4): 1216-1220. https://doi.org/10.3892/mmr.2013.1608
  29. Gonzalez-Gallego J, Garcia-Mediavilla MV, Sanchez-Campos S, Tunon MJ. Fruit polyphenols, immunity and inflammation. Br J Nutr 2010; 104 Suppl 3: S15-S27. https://doi.org/10.1017/S0007114510003910
  30. Chapple IL. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 1997; 24(5): 287-296. https://doi.org/10.1111/j.1600-051X.1997.tb00760.x
  31. Shibata H, Sakamoto Y, Oka M, Kono Y. Natural antioxidant, chlorogenic acid, protects against DNA breakage caused by monochloramine. Biosci Biotechnol Biochem 1999; 63(7): 1295-1297. https://doi.org/10.1271/bbb.63.1295
  32. Benjakul S, Kittiphattanabawon P, Sumpavapol P, Maqsood S. Antioxidant activities of lead (Leucaena leucocephala) seed as affected by extraction solvent, prior dechlorophyllisation and drying methods. J Food Sci Technol 2014; 51(11): 3026-3037. https://doi.org/10.1007/s13197-012-0846-1

Cited by

  1. Is the Household Microwave Recommended to Obtain Antioxidant-Rich Extracts from Lycium barbarum Leaves? vol.9, pp.4, 2019, https://doi.org/10.3390/pr9040656