• 제목/요약/키워드: mechatronics

검색결과 3,327건 처리시간 0.033초

자가보정법을 이용한 정밀 스테이지의 직각도 보정 (Orthogonality Calibration of a High Precision Stage using Self-calibration Method)

  • 김기현;박상현;김동민;장상돈
    • 한국정밀공학회지
    • /
    • 제27권3호
    • /
    • pp.50-57
    • /
    • 2010
  • A high precision air bearing stage has been developed and calibrated. This linear-motor driven stage was designed to transport a glass or wafer with the X and Y following errors in nanometer regime. To achieve this level of precision, bar type mirrors were adopted for real time ${\Delta}X$ and ${\Delta}Y$ laser measurement and feedback control. With the laser wavelength variation and instability being kept minimized through strict environment control, the orthogonality of this type of control system becomes purely dependent upon the surface flatness, distortion, and assembly of the bar mirrors. Compensations for the bar mirror distortions and assembly have been performed using the self-calibration method. As a result, the orthogonality error of the stage was successfully decreased from $0.04^{\circ}$ to 2.48 arcsec.

폴리머 기판의 표면개질을 통한 ZnO:Al 투명전도막의 전기적 특성 개선 (Electrical property improvement of ZnO:Al transparent conducting oxide thin film as surface treatment of polymer substrate)

  • 팽성환;정기영;박병욱;곽동주
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1352-1353
    • /
    • 2008
  • In this study, aluminium - doped zinc oxide (ZnO:Al) transparent conducting film was deposited on PET(polyethylen terephthalate) substrate by r.f. magnetron sputtering method. PET substrate was surface-treated in an atmospheric pressure DBD(dielectric barrier discharge) plasma to increase deposition rate and to improve electrical propesties. Morphological changes by DBD plasma were obsered using contact angle measurement. The contact angle of water on PET was reduced from 62$^{\circ}$ to 42$^{\circ}$ by DBD plasma surface treatment. The plasma treatment also increased deposition rate and electrical propesties. The electrical resistivity as low as $4.97{\times}10^{-3}[{\Omega}-cm]$ and the deposition rate of 234[${\AA}$-m/min] were obtained in ZnO:Al film with surface treatment time of 5min, and 20min., respectively.

  • PDF

LabVIEW를 이용한 TIG 용접 자동 전압 제어 장치 개발 (Development of Automatic Voltage Control Equipment using LabVIEW Software)

  • 송상은;정영철;조영태;정윤교
    • 한국기계가공학회지
    • /
    • 제16권1호
    • /
    • pp.112-117
    • /
    • 2017
  • The arc, generated by Tungsten Inert Gas(TIG) welding, is stable and provides excellent quality of the weld. Since automation is difficult, a lot of work is performed by hand. In addition, to obtain the uniform weld quality is difficult when using a base metal having a nonuniform welding line, or when welding inside a pipe. Generally, TIG welding power has the characteristic of constant-current. The welding voltage is changed in proportion to the arc length. Hence, the automatic voltage control equipment should be applied at the TIG welding system. The automatic voltage control equipment has been designed using LabVIEW software. It consists of a manufactured voltage divider circuit, and jig for moving the torch. The voltage measurements and driving of the motor were performed through the algorithm implementation in LabVIEW. Welding was conducted while increasing the arc length. In this process, it was confirmed that the automatic voltage control equipment kept the arc length constant.

열처리 공정에서 가열 영역에 따른 평기어의 열변형 해석에 관한 연구 (A Study on the Thermal Deformation Simulation of Spur Gear According to the Heat Zones in Heat Treatment Process)

  • 김진록;윤성호;정윤철;서창희;권태하
    • 한국기계가공학회지
    • /
    • 제19권7호
    • /
    • pp.60-66
    • /
    • 2020
  • In order to improve fatigue life of transmission gear carburizing is normally used. Carburizing is a very good process to achieve low cost and high performance. The machined gears are heated up to carburizing temperature and then cooled rapidly in an oil bath to produce high surface hardness. The gears may undergo excessive thermal distortion during heating and rapid cooling. In order to predict the distortion during heating and rapid cooling, a coupled thermo-mechanical simulation is needed. In the current research, the simulation of heating and cooling was performed. The results show that the thermal distortion and the residual stresses are well predicted by the coupled simulation. In addition, induction heating and rapid cooling simulation is carried out to predict the thermal distortion. The amount of distortion is compared. It is shown that induction heating is very effective to reduce thermal distortion.

병렬구조 로봇의 보정을 위한 보정 가능 변수 판별과 최적 자세 선정에 관한 연구 (Study on the Identifiable Parameters and Optimum Postures for Calibrating Parallel Manipulators)

  • 박종혁;김성관;압둘라우프;류제하
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1476-1481
    • /
    • 2003
  • Kinematic calibration enhances absolute accuracy by compensating for the fabrication tolerances and installation errors. Effectiveness of calibration procedures depends greatly on the measurements performed. This paper investigates identifiable parameters and optimum postures for four different calibration procedures - measuring postures completely with inverse kinematic residuals, measuring postures completely with forward kinematics residuals, measuring only the three position components, and restraining the mobility of the end-effector using a constraint link. The study is performed for a six degree-of-freedom fully parallel HexaSlide type parallel manipulator, HSM. Results verify that all parameters are identifiable with complete posture measurements. For the case of position measurements, one and for the case of constraint link, three parameters were found non-identifiable. Selecting postures for measurement is also an important issue for efficient calibration procedure. Typically, the condition number of the identification Jacobian is minimized to find optimum postures. Optimal postures showed the same trend of orienting themselves on the boundaries of the search space.

  • PDF

야지 고속 주행 로봇을 위한 패시브 메커니즘의 안정성 비교 분석 (Analysis for Stability for Passive Mechanisms of High Speed Mobile Robot on Rough Terrain)

  • 김영진;전봉수;김자영;이지홍
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.124-131
    • /
    • 2014
  • The robot mechanisms that were previously researched had only been conducted for the purpose of overcoming the obstacles stably at low speed driving and enhancing the stability against high speed circuitous driving, and yet, the mechanism satisfying two purposes. However, in order to stably drive with high speed on rough terrain, there is a need for satisfying both of these purposes, as well as testing the efficiency of the mechanisms at high speed driving. There, this paper simulated some of the passive mechanisms and focused on checking the performances of passive mechanisms through simulations and analyzing each mechanism on the basis of an evaluation index. The simulation was conducted by Adams (The Multi-body Dynamics Simulation Solution) and used various types of passive mechanisms which were introduced in the robotics field. As a result, the study confirmed that passive mechanisms have a number of situations that affect the driving stability on each direction of roll and pitch. Further study is needed about active mechanism.

나선형 미세채널 내부에 형성되는 딘와류 이용한 미세입자 분리소자 (Microparticle Separator based on Dean Vortex in Spiral Microchannel)

  • 변강일;김형진;김병희;서영호
    • 한국생산제조학회지
    • /
    • 제23권6호
    • /
    • pp.555-560
    • /
    • 2014
  • This paper presents a microparticle separator using a spiral microchannel. A particle separator based on the dean vortex was designed, fabricated, and characterized. Two different spiral microchannels were fabricated. Width and initial radius of rotation in the spiral microchannel were fixed to $300{\mu}m$ and 1.75 mm, respectively. Two different depths of the microchannels were designed at $50{\mu}m$ and $80{\mu}m$. In this experimental study, the equilibrium position of microparticles was monitored by using fluorescent microbeads. In the case of a low dean number (<1.0), lift force and dean drag force were similar, indicating that microbeads were distributed to almost all areas across microchannels. However, in the case of a high dean number (>1.0), dean drag force rather than lift force was dominant, indicating that microbeads moved toward the inner wall of the spiral microchannel.

다축 동기 제어 방법 기반의 산업용 고속 병렬로봇 제어 (Synchronization Error-based Control Approach for an Industrial High-speed Parallel Robot)

  • 도현민;김병인;박찬훈;경진호
    • 한국생산제조학회지
    • /
    • 제25권5호
    • /
    • pp.354-361
    • /
    • 2016
  • Parallel robots are usually used for performing pick-and-place motion to increase productivity in high-speed environments. The present study proposes a high-speed parallel robot and a control approach to improve the tracking performance for the purpose of handling a solar cell. However, the target processes are not limited to the solar cell-handling field. Therefore, a delta-type parallel manipulator is designed, and a ball joint structure is specifically proposed to increase the allowed angle that would meet the required workspace. A control algorithm considering the synchronization between multiple joints in a closed-chain mechanism is also suggested to improve the tracking performance, where the tracking and synchronization errors are simultaneously considered. In addition, a prototype machine with the proposed ball joint is implemented. A satisfactory tracking performance is achieved by applying the proposed control algorithm, with a cycle time of 0.3 s for a 0.1 kg payload.

8.5G 솔라셀 평판 핸들링 로봇의 진동 제어 (Vibration Analysis of the Large Substrate Handling Robot)

  • 박동일;박철훈;박찬훈;김두형
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.498-503
    • /
    • 2016
  • Many types of robot systems are used in the mass production line of thin film solar cells and flat panel displays. There are some issues such as the deflection and the vibration of the end-effector because robots handle large and heavy substrates at high speed. Heavy payload and high speed cause much vibration because the end-effector (fork) is made of carbon fiber reinforced polymer because of its light weightiness and sufficient stiffness. This study performs a dynamic simulation of an 8.5G solar cell substrate handling robot, including rigid and flexible bodies and a vibration controller. The fifth polynomial trajectory and the zero vibration derivative input shaping algorithm are applied. The vibration reduction is also proved in the experiments.

빈-피킹을 위한 다관절 로봇 그리퍼의 관절 데이터를 이용한 물체 인식 기법 (Method of Object Identification Using Joint Data of Multi-Joint Robotic Gripper for Bin-picking)

  • 박종우;박찬훈;박동일;김두형
    • 한국생산제조학회지
    • /
    • 제25권6호
    • /
    • pp.522-531
    • /
    • 2016
  • In this study, we propose an object identification method for bin-picking developed for industrial robots. We identify the grasp posture and the associated geometric parameters of grasp objects using the joint data of a robotic gripper. Prior to grasp identification, we analyze the grasping motion in a low-dimensional space using principle component analysis (PCA) to reduce the dimensions. We collected the joint data from a human hand to demonstrate the grasp-identification algorithm. For data acquisition of the human grasp data, we conducted additional research on the motion characteristics of a human hand. We explain the method for using the algorithm of grasp identification for bin-picking. Finally, we present a subject for future research using our proposed algorithm of grasp model and identification.