• 제목/요약/키워드: mechanism

검색결과 34,737건 처리시간 0.05초

Practical Ultraprecision Positioning of a Ball Screw Mechanism

  • Sato, Kaiji;Maeda, Guilherme Jorge
    • International Journal of Precision Engineering and Manufacturing
    • /
    • 제9권2호
    • /
    • pp.44-49
    • /
    • 2008
  • This paper describes the problem of ultraprecision positioning with a ball screw mechanism in the microdynamic range, along with its solution. We compared the characteristics of two ball screw mechanisms with different table masses. The experimental results showed that the vibration resulting from the low stiffness of the ball screw degraded the positioning performance in the microdynamic range for the heavyweight mechanism. The proposed nominal characteristic trajectory following (NCTF) controller was designed for ultra precision positioning of the ball screw mechanism. The basic NCTF control system achieved ultra precision positioning performance with the lightweight mechanism, but not with the heavyweight mechanism. A conditional notch filter was added to the NCTF controller to overcome this problem. Despite the differences in payload and friction, both mechanisms then showed similar positioning performance, demonstrating the high robustness and effectiveness of the improved NCTF controller with the conditional notch filter. The experimental results demonstrated that the improved NCTF control system with the conditional notch filter achieved ultra precision positioning with a positioning accuracy of better than 10 nm, independent of the reference step input height.

구동 링크기구 최적설계 분석 및 대부하 구동제어 성능추정 프로그램 개발 (Optimal Design Analysis of Link-Mechanism and Development of Control Performance Estimation Program for Unbalanced Heavy-Loaded Drive System)

  • 최근국;이만형;안태영
    • 한국정밀공학회지
    • /
    • 제16권6호
    • /
    • pp.7-13
    • /
    • 1999
  • The unbalanced heavy-loaded elevation-driving system is composed of link-mechanism, hydraulic cylinder and compensator for the static unbalanced moment of the load. Control and compensation of elevation-driving system is very difficult because these mechanisms imply highly nonlinear properties due to hydraulic fluid characteristics and mechanical rotation of link-mechanism. In this study, through the analysis of the link-mechanism, the optimal design of the link-mechanism is suggested. Also to estimate the control performance of the unbalanced, heavy-loaded servo-controlled system, modeling and simulation of nonlinear system are carried out. To prove the validity of performance estimation program, simulation results are compared with the experimental results. Both results are similar, therefore this program will be helpful to study the improvement of the system control performance.

  • PDF

단절 및 거절 도식과 정신건강 간의 관계에서 방어기제의 매개효과 (The Mediating Effect of Defense Mechanism in the Relation between Disconnection and rejection Schema and Mental Health)

  • 김행신;서수균
    • 수산해양교육연구
    • /
    • 제27권3호
    • /
    • pp.656-671
    • /
    • 2015
  • The purpose of the present study is to examine relationships between disconnection and rejection schema, defense mechanism, and mental health in college students using structural equation modeling. The present study suggested a proposed model in which defense mechanism exerted a full mediating effect on the relation between disconnection and rejection schema and mental health. Goodness of fit tests were used to compare the proposed model against competing models. The subjects consisted of 304 college students. They completed the Young Schema Questionnaire(YSQ-SF), the Defense Style Questionnaire(DSQ), and the Mental Health Scale. The results showed that the second model had a better goodness of fit. Based on these findings, it is suggested that psychological interventions for mental health in college students should consider strategies to use more flexible and more adaptive defense mechanism style.

QM/MM-MD Simulation을 통한 수용액 상에서의 Formamide Hydrolysis Mechanism 연구

  • 백용수;최철호
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제3회(2014년)
    • /
    • pp.141-155
    • /
    • 2014
  • Peptide bond hydrolysis는 세포 내외의 생화학반응에 있어서 핵심이다. 하지만 amide Hydrolysis Mechanism은 아직 명확하게 규명되지 않았다. pH가 중성인 물에서의 비 촉매 가수분해가 발생하는 몇몇 실험적 증거가 있지만, 해당 반응 매커니즘은 4 가지(non-assisted concerted, non-assisted step-wise, assisted concerted, assisted step-wise)로 여전히 논란이 있다. 이번 연구에서는, Formamide의 가능한 Hydrolysis Mechanism을 자세히 연구해보고자 한다. 먼저, Ab-initio 계산을 통해 4가지 반응 메커니즘의 다시 한번 확인하고, quantum chemical calculations과 quantum mechanical molecular dynamic이 결합된 (QMMD) simulation을 통하여 water solvent에서의 반응 메커니즘의 에너지관계를 규명하였다. 결론적으로 아직 계산이 끝나지 않은 supported concerted mechanism을 제외한 모든 계산에서 non-supported, supported 두 system 모두에서 step-wise가 일어나기 쉬웠고, non-supported 보다 supported mechanism이 선호됨을 보였다. Intermediate인 amino-gem-diol의 수용액 상에서 안정화 또한 나타났다. 이는 Ab-initio 계산만 통해서는 정확하게 산출할 수 없는 엔트로피의 영향을 잘 보여준다.

  • PDF

The Mechanism : Hydrolysis of Formamide

  • 백용수;최철호
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.91-98
    • /
    • 2015
  • Formamide의 중성가수분해 mechanism은 QM/MM (quantum mecahnics/molecular mechanics) molecular dynamics simulations 및 CPMD과 같은 방법으로 연구되어왔다. 본 연구에서는. Umbrella sampling을 이용한 QM/MM-MD simulation을 사용하여 4가지 반응의 free energy surface를 도출해냈다. 전체적으로, 가장 선호되는 메커니즘은 two step으로 구성된 water assisted stepwise mechanism이었으며 모든 mechanism은 ab-initio calculation과 QM/MM-MD simulation이 수행되었다. water assisted stepwise mechanism을 살펴보면, 첫 번째 step에서 formamide의 carbonyl group이 hydrate되면서 gem-diol intermediate를 형성한다. 다음 step에서, intermediate의 hydroxyl group으로부터 amino group으로 water-assisted proton transfer이 일어난다. 두 반응 모두에서 물이 proton transfer를 직접적으로 도와주는 것을 관찰할 수 있었다. 특히, ab-initio calculation과는 다르게 QM/MM-MD에서는 gem-diol intermediate가 안정화되는 것으로 solvent effect를 잘 보여준다.

  • PDF

면역 피드백 메카니즘에 기초한 비선형 PID 제어기 설계 (Design of Nonlinear PID Controller Based on Immune Feedback Mechanism)

  • 박진현;최영규
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제52권3호
    • /
    • pp.134-141
    • /
    • 2003
  • PID controllers with constant gains have been widely used in various control systems due to its powerful performance and easy implementation. But it is difficult to have uniformly good control performance in all operating conditions. In this paper, we propose a nonlinear variable PR controller with immune feedback mechanism. An immune feedback mechanism is based on the functioning of biological T-cells, they include both an active term, which controls response speed. and an inhibitive term, which controls stabilization effect. Therefore, the proposed nonlinear PID controller is based on immune responses of biological. immune feedback mechanism which is the cell mediated immunity and In order to choose the optimal nonlinear PID controller games, we also propose the tuning algorithm of nonlinear function parameter in immune feedback mechanism. To verify performance of the proposed algorithm, the speed control of nonlinear DC motor are performed. Front the simulation results, we have found that the proposed algorithm is more superior to the conventional constant fain PID controller.

대차 틸팅 기구의 동적 해석 (Dynamic Analysis of a Bogie Tilting Mechanism)

  • 구동회;김남포;한형석
    • 한국철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.300-307
    • /
    • 2003
  • Using a conventional railway, a tilting train was applied as a means of improving vehicle speed curve negotiation without any modification of infrastructure. In order to achieve the optimal car-body position control through the tilting mechanism, a dynamics analysis was required after the kinematics analysis of the tilting mechanism. For this, the geometric relationship of the linkage-type tilting mechanism was defined. Then, the equations of motion for the half car-body were derived. With the derived equations, the effect of the parameter change on performance was analyzed. The analysis result can be used in the optimum design of a tilting mechanism that considers the track environment, vehicle and operational conditions in which the tilting vehicle is applied.

대차 틸팅 기구의 매개변수 분석 연구 (Parametric Study of a Bogie Tilting Mechanism)

  • 김남포;구동회;한형석
    • 한국철도학회논문집
    • /
    • 제6권4호
    • /
    • pp.294-299
    • /
    • 2003
  • Using a conventional railway, a tilting train was applied as a means of improving vehicle speed during curve negotiation without any modification of infrastructure. As a study for the optimum design of the tilting mechanism of a tilting vehicle, the kinematics sensitivity of the tilting mechanism was analyzed. Using the geometric relationship of the linkage-type tilting mechanism, the relationship of the parameters and the performance index was defined using nonlinear algebraic equations. With the defined relation, the effect of change in the parameters on the performance was analyzed. The analysis result can be used in the optimum design of a tilting mechanism that considers the track environment, vehicle and operational condition in which the tilting vehicle is applied.

PZT를 이용한 Semi-inchworm구동기법의 초정밀 회전 스테이지 개발 (Development of ultra precision rotational stage using Semi-inchworm driving mechanism with PZT)

  • 윤덕원;안강호;한창수
    • 반도체디스플레이기술학회지
    • /
    • 제6권1호
    • /
    • pp.37-41
    • /
    • 2007
  • Recently PZT is used in ultra precision mechanism field. PZT has a small motion range although it has a high resolution. Many methods, such as inchworm, impact driving, etc., have been applied for the expansion of the motion range.? In this study, the new actuating mechanism for rotational motion with two PZT actuators is proposed. The ultra precision rotational actuator which is made by proposed mechanism is able to operate both coarse and fine motion. The design parameters of the proposed mechanism are considered to improve the performance of the system. The rotational stage which is applied by the proposed mechanism is fabricated. The resolution and velocity for fabricated rotational stage are measured by laser interferometer.

  • PDF

평면형 병렬 기구의 기구학적 최적설계: 2RRR-RP기구에 적용 (Optimal Kinematic Design of Planar Parallel Mechanisms: Application to 2RRR-RP Mechanism)

  • 남윤주;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제12권5호
    • /
    • pp.464-472
    • /
    • 2006
  • This paper presents the two degree-of-freedom (DOF) planar parallel mechanism, called the $2{\underline{R}}RR-RP$ manipulator, whose degree-of-freedom is dependent on an additional passive constraining leg connecting the base and the platform. First, the kinematic analysis of the mechanism is performed: the inverse and forward kinematic problems are analytically solved, the workspace is systematically derived, and all of the singular configurations are examined. Then, in order to determine the geometric parameters the optimization of the mechanism is performed considering its dexterity, stiffness, and space utilization. Finally, the kinematic performances of the optimized mechanism are evaluated through the comparison study to the conventional 5-bar parallel manipulator.