• Title/Summary/Keyword: mechanical updating

Search Result 85, Processing Time 0.026 seconds

Topology Design of a Structure with a Specified Eigenfrequency (주어진 고유주파수를 갖는 구조물의 위상최적설계)

  • Lee, Jong-Hwan;Min, Seung-Jae
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.392-397
    • /
    • 2001
  • Topology optimization is applied to determine the layout of a structure whose eigenfrequency coincides with a specified frequency. The topology optimization problem is formulated to minimize the difference between the structural frequency and a given frequency using the homogenization method and the modified optimality criteria method. It turns out that the value of a weighting factor in the updating scheme plays an important role to achieve both a suitable speed and a stable convergence of an algorithm. Unlike a constant weighting factor in previous works, it is suggested that a weight factor is varied during the iteration to control the amount of the frequency change. To substantiate the proposed approach two-dimensional structural design problems are presented and the resulted topology layouts for the specified eigenfrequency are compared to layouts for maximizing the corresponding eigenfrequency.

  • PDF

Development of an Optimization Algorithm based on the Taguchi method (다구찌법을 이용한 최적설계 알고리듬의 개발 및 구현)

  • Lee, Sang-Hoon;Kwak, Byung-Man
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.565-571
    • /
    • 2001
  • As a method of structural optimization, a practical algorithm based on the Taguchi method is developed. The Taguchi method is applied iteratively updating the level values of design variables. The design region is translated or reduced during optimization and by appropriate choice of reduction factor and initial level intervals, a near-optimum solution can be found very efficiently. To treat inequality constraints, a variable penalty method is utilized. A software system named 'DS/Taguchi' is developed by integrating the proposed algorithm and commercial finite element analysis codes on the parametric CAD platform. Two examples are taken to examine the performance of the proposed algorithm and the developed software system.

  • PDF

Model Updating in Small Structural Dynamics Model by Elimination of Mass Loading Effect of Accelerometer (가속도계 영향을 제거한 소형 구조물의 동특성 모델 개선)

  • Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.1
    • /
    • pp.40-47
    • /
    • 2015
  • Dynamic response of any small structure is always affected by the mass of the attached accelerometer. This paper predicts the natural frequencies and frequency response functions by removing the mass loading effect from the accelerometer. This mass loading is studied on a simple cantilever beams by varying the location of accelerometer. By using sensitivity analysis with iteration method, accelerometer mass and location are obtained. The predicted natural frequencies of the small cantilever beam without the accelerometer's mass show good agreement with the structural re-analysis.

Mechanical Strength Analysis of Station Type Po1ymer Insulator (좌립형 폴리머 지지애자의 기계적 강도 해석)

  • 조한구;박기호;한동희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2000.11a
    • /
    • pp.85.1-88
    • /
    • 2000
  • FRP has been used very much as high strength core materials for insulators because of its high strength and good insulation properties. In this study cantilever, tension and torsion stress were simulation along to the unidirection glass fiber. In addition, FRP was made by pultrusion method. This paper proposed the procedure of the finite element model updating and pretest using the commerical finite element code MSC.Nastran. To ehance the efficiency of experimental modal analysis, we proposed the process which is the selection of the locations and the number of measurement points for pre-test.

  • PDF

System Identification of a Building Structure Using Wireless MEMS System (무선 MEMS 시스템을 이용한 구조물 식별)

  • Kim, Hong-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.4
    • /
    • pp.458-464
    • /
    • 2008
  • The structural health monitoring has been gaining more importance in civil engineering areas such as earthquake and wind engineering. The use of health monitoring system can also provide tools for the validation of structural analytical model. However, only few structures such as historical buildings and some important long bridges have been instrumented with structural monitoring system due to high cost of installation, long and complicated installation of system wires. In this paper, the structural monitoring system based on cheap and wireless monitoring system is investigated. The use of advanced technology of micro-electro-mechanical system(MEMS) and wireless communication can reduce system cost and simplify the installation. Further the application of wireless MEMS system can provide enhanced system functionality and due to low noise densities. Identification results are compared to ones using data measured from traditional accelerometers and results indicate that the system identification using wireless MEMS system estimates system parameters accurately.

Identification of nonlinear systems through statistical analysis of the dynamic response

  • Breccolotti, Marco;Pozzuoli, Chiara
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.195-213
    • /
    • 2020
  • In this paper an extension to the method for the identification of mechanical parameters of nonlinear systems proposed in Breccolotti and Materazzi (2007) for MDoF systems is presented. It can be used for damage identification purposes when damage modifies the linear characteristics of the investigated structure. It is based on the following two main features: the solution of the Fokker-Planck equation that describes the response probabilistic properties of the system when it is excited by external Gaussian loads; and a model updating technique that minimizes the differences between the response of the actual system and that of a parametric system used to identify the unknown parameters. Numerical analysis, that simulate virtual experimental tests, are used in the paper to show the capabilities of the method and to analyse the conditions required for its application.

Enhanced least square complex frequency method for operational modal analysis of noisy data

  • Akrami, V.;Zamani, S. Majid
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.263-273
    • /
    • 2018
  • Operational modal analysis is being widely used in aerospace, mechanical and civil engineering. Common research fields include optimal design and rehabilitation under dynamic loads, structural health monitoring, modification and control of dynamic response and analytical model updating. In many practical cases, influence of noise contamination in the recorded data makes it difficult to identify the modal parameters accurately. In this paper, an improved frequency domain method called Enhanced Least Square Complex Frequency (eLSCF) is developed to extract modal parameters from noisy recorded data. The proposed method makes the use of pre-defined approximate mode shape vectors to refine the cross-power spectral density matrix and extract fundamental frequency for the mode of interest. The efficiency of the proposed method is illustrated using an example five story shear frame loaded by random excitation and different noise signals.

Edge Line Information based Underwater Landmark for UUV

  • Yu, Son-Cheol;Kang, Dong-Joung;Kim, Jae-Soo
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.2
    • /
    • pp.68-75
    • /
    • 2011
  • This paper addresses an underwater landmark for updating UUV positioning information. A method is proposed in which the landmark's cubic shape and edge are recognized. The reliability, installation load, and management of landmark design were taken into consideration in order to assess practical applications of the landmark. Landmark recognition was based on topological features. The straight line recognition confirmed the landmark's location and enabled an UUV to accurately estimated its underwater position with respect to the landmark. An efficient recognition method is proposed, which provides real-time processing with limited UUV computing power. An underwater experiment was conducted in order to evaluate the proposed method's reliability and accuracy.

The Development of Optimal Soot Blowing System for Power Plant (발전용 최적 Soot Blowing 시스템 개발)

  • Kim, Sung-Ho;Jung, Hae-Won;Yook, Sim-Kyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.897-902
    • /
    • 2001
  • SBOS(Soot blower Optimum System) analyzes the accumulated fouling rate of a coal-fired boiler plant at short intervals, compares it with a reference data, and determines the optimal time of soot blowing. In this paper, ANFIS algorithm which is an optimal algorithm to detect variation of boiler performance with time, updating the reference data and to eliminate the effects of noise in field signal is used to clean heating surface and to reduce steam needed to blow the soot.

  • PDF

A real time method of vehicle system dynamics

  • Bae, Daesung
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.2
    • /
    • pp.18-28
    • /
    • 2001
  • Super computers has been utilized to carry out vehicle dynamics in real time. This research propose an implicit integra-tion method for vehicle state variables. Newton chord method is empolyed to solve the equations of motion and con-straints. The equations of motion and constraints are formulated such that the Jacobian matrix for Newton chord method is needed to be computed only once for a dynamic analysis. Numerical experiments showed that the Jacobian matrix generat-ed at the initial time could have been utilized for the Newton chord iterations throughout simulations under various driving conditions. Convergence analysis of Newton chord method with the proposed Jacobian updating method is carried out. The proposed algorithm yielded accurate solutions for a prototype vehicle multibody model in realtime on a 400 MHz PC compatible.

  • PDF