• Title/Summary/Keyword: mechanical seal

Search Result 269, Processing Time 0.022 seconds

Finite Element Analysis of Gaskets for Hydrogen Fuel Cells (수소 연료전지용 가스켓의 유한요소해석)

  • Cheon, Kang-Min;Jang, Jong-Ho;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.10
    • /
    • pp.95-101
    • /
    • 2021
  • An analysis was conducted to predict the behavior of gasket by applying an optimal-strain energy-density function selected through a uniaxial tensile test and an analysis of the gasket used in an actual hydrogen fuel cell. Among the models compared to predict the materials' properties, the Mooney-Rivlin secondary model showed the behavior most similar to the test results. The maximum stress of the gasket was not significantly different, depending on the location. The maximum surface pressure of the gasket was higher at positions "T" and "Y" than at other positions, owing to the branch-shape effect. In the future, a jig that can measure the surface pressure will be manufactured and a comparative verification study will be conducted between the test results and the analysis results.

Design of Gaskets for Hydrogen Fuel Cells Using Taguchi Method (다구찌 기법을 이용한 수소 연료전지용 가스켓 설계)

  • Cheon, Kang-Min;An, Jun-Hyeon;Hur, Jang-Wook
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.1
    • /
    • pp.66-72
    • /
    • 2022
  • The Mooney-Rivlin second order optimal strain energy function derived through uniaxial tensile test and analysis was applied to a gasket to confirm the internal stress and surface pressure generated during compression. The Taguchi method, a statistical technique, was used to design the optimum shape of the gasket, and through characteristic evaluation, the optimum shape of the gasket was obtained when the reference plane (T: 0.15 mm), contact surface (W: 1.00 mm), and curvature (R: 0.30 mm) were used. It was determined that the optimum shape yields a von Mises stress of 4.83 MPa, and the contact pressure stress is 20.14 MPa, which satisfies breakage and sealing requirements. In the future, we plan to manufacture a jig that can measure surface pressure to conduct comparative verification studies between the test results and analysis results.

A Probabilistic based Systems Approach to Reliability Prediction of Solid Rocket Motors

  • Moon, Keun-Hwan;Gang, Jin-Hyuk;Kim, Dong-Seong;Kim, Jin-Kon;Choi, Joo-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.17 no.4
    • /
    • pp.565-578
    • /
    • 2016
  • A probabilistic based systems approach is addressed in this study for the reliability prediction of solid rocket motors (SRM). To achieve this goal, quantitative Failure Modes, Effects and Criticality Analysis (FMECA) approach is employed to determine the reliability of components, which are integrated into the Fault Tree Analysis (FTA) to obtain the system reliability. The quantitative FMECA is implemented by burden and capability approach when they are available. Otherwise, the semi-quantitative FMECA is taken using the failure rate handbook. Among the many failure modes in the SRM, four most important problems are chosen to illustrate the burden and capability approach, which are the rupture, fracture of the case, and leak due to the jointed bolt and O-ring seal failure. Four algorithms are employed to determine the failure probability of these problems, and compared with those by the Monte Carlo Simulation as well as the commercial code NESSUS for verification. Overall, the study offers a comprehensive treatment of the reliability practice for the SRM development, and may be useful across the wide range of propulsion systems in the aerospace community.

Design and Control of Robot Arm for Inspection and Rescue Operations (재난 탐사 및 구조를 위한 로봇팔 설계 및 제어)

  • Kang, Jin-Il;Choi, Hyeung-Sik;Jun, Bong-Huan;Ji, Dae-Hyeong;Oh, Ji-Yoon;Kim, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.11
    • /
    • pp.888-894
    • /
    • 2016
  • This paper presents the kinematic and dynamic analysis of the robot arm for inspection and rescue operations. The inspection robot arm has Pitch-Pitch-Pitch-Yaw motion for an optimal and stable view of the camera installed at the end of the manipulator. The rescue operation robot arm has Yaw-Pitch-Pitch-Roll motion to handle heavy tools. Additionally, both robot arms are waterproof, as they use the triple-layer O-ring. Furthermore, the dynamic equation including the damping force due to the mechanical seal for waterproofness was derived by using the Newton-Euler method. A control system using the ARM processor was developed and introduced in this paper, and its performance was verified through experiments.

A Combination Study on the Elevation Motion Friction Compensation Parameters in Gas Spring (1) (가스 스프링 Elevation 동작 마찰력 보상 변수 조합 연구 (1))

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2017
  • In this study, factor analysis was performed to reduce the friction in the elevation motion of a stand for a 50-inchtelevision. Pipe type cross-section control was used for accurate positioning control of the piston rod. The pipe type was also compared with a labyrinth-type crosssection for the orifice. The frictional force was then reduced using gas seal lip technology. Specifications were chosen, and a volume compensation experiment was carried out using an apparatus for compensating the volume of the cylinder, which is compressed by the volume of the piston rod. Based on CAE and experimental considerations, the labyrinth-type orifice is preferred for reducing friction. For the gas seal lip technology, outer and inner diameters of ${\Phi}20$ and ${\Phi}8$ for the hollow rod were more appropriate when assuming the weight of a 50-inch television to be 30kgf. The third is that the result of total consideration in stability problem and performance of volume compensation for specification decision and volume compensation experiment is determined the final speculation of hollow rod ?8x?4 and riveting system. The last is that the labyrinth orifice is not founded that of the ${\O}0.4{\sim}0.6$ orifice both tests on 300 mm intervals.

Finite Element Analysis of the Contact Stress Characteristics in Scraper Seals (스크레이퍼 실의 접촉응력 특성에 관한 유한요소해석)

  • Kim, Chung-Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.895-902
    • /
    • 1999
  • This paper deals with a numerical study of the tribological contact stress distributions of elastomeric lip seals for oscillating shafts when the sealing interference and band width between the lip ease or contact seals and the shaft are present. Using the finite element method the contact stress and band width of scraper seals are analyzed for the sealing interference including some nonlinearities such as geometrical nonlinearity, material nonlinearity and nonlinear contact boundary condition. The FEM results showed that the contact stress concentrated on the contacting lip zone between the contacting edge of lip and the shaft for the increased interference. In double lip scraper seals, ole maximum contact stress of the dust lip, which is used to exclude foreign contaminants is six times higher than that of the primary sealing lip, which is used to contain lubricants.

Study on the performance of elastomeric O-ring subjected to foreign objects using finite-element analysis (유한요소해석을 이용한 이물질이 고무 오링에 미치는 영향과 성능 평가)

  • Pack, Inseok;Rhee, Heejang;Lee, Seoksoon
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.3
    • /
    • pp.52-58
    • /
    • 2016
  • The elastomeric O-ring is the most-commonly-used seal due to its excellent sealing capacity, and its availability in various costs and sizes; furthermore, its importance has lasted over a long duration. However, a dearth of research exists in Korea regarding the elastomeric O-ring and the corresponding techniques. The constituent parts of elastomeric rubber are important; to determine their properties, the uni-axial tension and equi-biaxial tension need to be tested. Also, the non-linear analysis method reduces the design cost. An O-ring failure causes leaks and vibration. In this paper, foreign objects are used to affect an O-ring and its performance so that all angles of the O-ring design can be considered. This paper presents a solution for the O-ring-failure problem using a finite-element analysis.

Thermal Analysis of a Canned Induction Motor for Main Coolant Pump in System-Integrated Modular Advanced Reactor

  • Huh, Hyung;Kim, Jong-In;Kim, Kern-Jung
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.1
    • /
    • pp.32-36
    • /
    • 2003
  • The three-phase canned induction motor, which consists of a stator and rotor with a seal can, is used for the main coolant pump (MCP) of the System-integrated Modular Advanced Reactor (SMART). The thermal characteristics of the can must be estimated exactly, since the eddy current loss of the can is a dominant parameter in design. Besides the insulation of the motor winding is compared of Teflon, glass fiber, and air, so it is not an easy task to analyze. A FEM thermal analysis was per-formed by using the thermal properties of complex insulation which were obtained by comparing the results of finite element thermal analysis and those of the experiment. As a result, it is shown that the characteristics of prototype canned induction motor have a good agreement with the results of FEM.

Tribological Properties of Raction-Bonded SiC-Graphite Composites (반응소결 SiC-graphite 복합체의 마찰마모특성)

  • 백용혁;신종윤;곽효섭;박용갑
    • Journal of the Korean Ceramic Society
    • /
    • v.33 no.5
    • /
    • pp.479-484
    • /
    • 1996
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as mechanical seal slurry valve disc and so on. In this study the effect of graphite addition on the mechanical and tribological properties of RBSC/graphite composites were investigated. The composites were prepared by adding graphite powder to the mixture of SiC powder metallic siliconcarbon black and alumina. Bending strength water absorption friction coefficient the amount of worn out material at a certain time and maximum surface roughness(Rmax) of the prepared composites were measured and crystalline phases were examined with XRD. The composite containing 5 vol% graphite powder showed improved bending strength due to high green density and decreased friction coefficient and wear resistance. The friction coefficient and the wear resistance of the composite were increased by adding graphite powder up to 10 vol% They decreased however as increasing the amount of graphite powder more that 10vol% There was no linear relationship between the tribological properties and bending strength of the composites.

  • PDF

The Characteristic of Friction-Factor on Honeycomb Surfaces (Part I : Experimantal Tests and Friction-Factor Modeling) (허니콤 표면의 마찰계수 특성에 관한 연구 (Part 1 : 표면 마찰계수 측정 및 모델링))

  • 하태웅
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.6
    • /
    • pp.1430-1438
    • /
    • 1994
  • Friction-factors for honeycomb surfaces are measured with a flat plate tester. The flat plate test apparatus is described and method is discussed for determining the friction-factor experimentally. The friction-factor is calculated for the flat plate test based on the Fanno-line flow. The test parameters are honeycomb cell width, depth, clearance, inlet pressure, and Reynolds number(or Mach number). A new empirical friction-factor model for honeycomb surfaces are developed as a function of these parameters.