• Title/Summary/Keyword: mechanical non-linearity

Search Result 120, Processing Time 0.029 seconds

A New Concept for Efficient Sensitivity Amplification of a QCM Based Immunosensor for TNF-α by Using Modified Magnetic Particles under Applied Magnetic Field

  • Bahk, Yeon-Kyoung;Kim, Hyung-Hoon;Park, Deog-Su;Chang, Seung-Cheol;Go, Jeung-Sang
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.12
    • /
    • pp.4215-4220
    • /
    • 2011
  • This study introduces a new concept for a simple, efficient and cheap sensitivity amplification of a Quartz Crystal Microbalance (QCM) based immunosensor system for the detection of tumor necrosis factor-alpha (TNF-${\alpha}$, TNF) by using an in-built magnetic system. The frequency shift due to the applied magnetic field was successfully observed on magnetic particles labeled detection antibodies, anti-human TNF-${\alpha}$, which were bound to the immunologically captured TNF-${\alpha}$ on the gold coated quartz crystals. In the present system, the magnitude of frequency shift depends on both the strength of magnetic field and the amount of target antigen applied. Significant signal amplification was observed when the additional built-in residual stress generated by the modified magnetic particles under the magnetic field applied. Used in conjunction with a sandwich type non-competitive immunoassay format, the lower detection limit was calculated to be 25 $ngmL^{-1}$ and showed good linearity up to TNF-${\alpha}$ concentrations as high as 2.0 ${\mu}gmL^{-1}$. The sensitivity, most importantly, was improved up to 4.3 times compared with the same QCM system which was used only an antigen-antibody binding without additional magnetic amplification.

Numerical analysis of the combined aging and fillet effect of the adhesive on the mechanical behavior of a single lap joint of type Aluminum/Aluminum

  • Medjdoub, S.M.;Madani, K.;Rezgani, L.;Mallarino, S.;Touzain, S.;Campilho, R.D.S.G.
    • Structural Engineering and Mechanics
    • /
    • v.83 no.5
    • /
    • pp.693-707
    • /
    • 2022
  • Bonded joints have proven their performance against conventional joining processes such as welding, riveting and bolting. The single-lap joint is the most widely used to characterize adhesive joints in tensile-shear loadings. However, the high stress concentrations in the adhesive joint due to the non-linearity of the applied loads generate a bending moment in the joint, resulting in high stresses at the adhesive edges. Geometric optimization of the bonded joint to reduce this high stress concentration prompted various researchers to perform geometric modifications of the adhesive and adherends at their free edges. Modifying both edges of the adhesive (spew) and the adherends (bevel) has proven to be an effective solution to reduce stresses at both edges and improve stress transfer at the inner part of the adhesive layer. The majority of research aimed at improving the geometry of the plate and adhesive edges has not considered the effect of temperature and water absorption in evaluating the strength of the joint. The objective of this work is to analyze, by the finite element method, the stress distribution in an adhesive joint between two 2024-T3 aluminum plates. The effects of the adhesive fillet and adherend bevel on the bonded joint stresses were taken into account. On the other hand, degradation of the mechanical properties of the adhesive following its exposure to moisture and temperature was found. The results clearly showed that the modification of the edges of the adhesive and of the bonding agent have an important role in the durability of the bond. Although the modification of the adhesive and bonding edges significantly improves the joint strength, the simultaneous exposure of the joint to temperature and moisture generates high stress concentrations in the adhesive joint that, in most cases, can easily reach the failure point of the material even at low applied stresses.

A Digitized Decoupled Dual-axis Micro Dynamically Tuned Gyroscope with Three Equilibrium Rings

  • Xia, Dunzhu;Ni, Peizhen;Kong, Lun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.385-395
    • /
    • 2017
  • A new digitized decoupled dual-axis micro dynamically tuned gyroscope with three equilibrium rings (TMDTG) is proposed which can eliminate the constant torque disturbance (CTD) caused by the double rotation frequency of a driving shaft with a micro dynamically tuned gyroscope with one equilibrium ring (MDTG). A mechanical and kinematic model of the TMDTG is theoretically analyzed and the structure parameters are optimized in ANSYS to demonstrate reliability. By adjusting the thickness of each equilibrium ring, the CTD can be eliminated. The digitized model of the TMDTG system is then simulated and examined using MATLAB. Finally, a digitized prototype based on FPGA is created. The gyroscope can be dynamically tuned by adjusting feedback voltage. Experimental results show the TMDTG has good performance with a scale factor of $283LSB/^{\circ}/s$ in X-axis and $220LSB/^{\circ}/s$ in Y-axis, respectively. The scale factor non-linearity is 0.09% in X-axis and 0.13% in Y-axis. Results from analytical models, simulations, and experiments demonstrate the feasibility of the proposed TMDTG.

Iterative Control-Relevant Identification and Controller Enhancement of MIMO Magnetic Bearing Rigid Rotor (반복적 설계 방식을 사용한 다중입출력 자기베어링 시스템의 식별 및 제어기 성능 향상)

  • Han, Dong-Chul;Lee, Sang-Wook;Ahn, Hyeong-Joon;Lee, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.493-498
    • /
    • 2000
  • The magnetic bearing systems are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing systems, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics-and non-linearity of magnetic bearings itself. "Identification for control" - joint optimization of system identification and controller design- is proposed to get the limited-order model which is suited for the design of high-performance controller. We applied the joint identification/controller design scheme to MIMO rigid rotor system supported by magnetic bearings. Firs, we designed controller of a nonlinear simulation model of MIMO magnetic bearing system with this scheme and proved its feasibility. Then, we performed experiments on MIMO rigid rotor system supported by magnetic bearings, and the performance of closed-loop system is improved gradually during the iteration.

  • PDF

Mechanical Characteristics of MLCA Anodic Bonded on Si wafers (실리콘기판위에 양극접합된 MLCA의 기계적 특성)

  • Kim, Jae-Min;Lee, Jong-Choon;Yoon, Suk-Jin;Chung, Gwiy-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.160-163
    • /
    • 2003
  • This paper describes on anodic bonding characteristics of MLCA(Multi Layer Ceramic Actuator) to Si-wafer using evaporated Pyrex #7740 glass thin-films for MEMS applications. Pyrex #7740 glass thin-films with same properties were deposited on MLCA under optimum RF magneto conditions(Ar 100 %, input power $1\;/cm^2$). After annealing in $450^{\circ}C$ for 1 hr, the anodic bonding of MLCA to Si-wafer was successfully performed at 600 V, $400^{\circ}C$ in - 760 mmHg. Then, the MLCA/Si bonded interface and fabricated Si diaphragm deflection characteristics were analyzed through the actuation test. It is possible to control with accurate deflection of Si diaphragm according to its geometries and its maximum non-linearity is 0.05-008 %FS. Moreover, any damages or separation of MICA/Si bonded interfaces do not occur during actuation test. Therefore, it is expected that anodic bonding technology of MICA/Si wafers could be usefully applied for the fabrication process of high-performance piezoelectric MEMS devices.

  • PDF

Prediction of Tensile Strength for Plasma-MIG Hybrid Welding Using Statistical Regression Model and Neural Network Algorithm (통계적 회귀 모형과 인공 신경망을 이용한 Plasma-MIG 하이브리드 용접의 인장강도 예측)

  • Jung, Jin Soo;Lee, Hee Keun;Park, Young Whan
    • Journal of Welding and Joining
    • /
    • v.34 no.2
    • /
    • pp.67-72
    • /
    • 2016
  • Aluminum alloy is one of light weight material and it is used to make LNG tank and ship. However, in order to weld aluminum alloy high density heat source is needed. In this paper, I-butt welding of Al 5083 with 6mm thickness using Plasma-MIG welding was carried out. The experiment was performed to investigate the influence of plasma-MIG welding parameters such as plasma current, wire feeding rate, MIG-welding voltage and welding speed on the tensile strength of weld. In addition we suggested 3 strength estimation models which are second order polynomial regression model, multiple nonlinear regression model and neural network model. The estimation performance of 3 models was evaluated in terms of average error rate (AER) and their values were 0.125, 0.238, and 0.021 respectively. Neural network model which has training concept and reflects non -linearity was best estimation performance.

Development of Fast-Response $CO_2$ Analyzer and Analysis of Engine-out Emission during Transient Condition of SI engine (고속응답 $CO_2$ 분석기의 제작 및 이를 이용한 SI 엔진에서의 실시간 배기가스 분석에 관한 연구)

  • Song, Hyun-Soo;Min, Kyoung-Doug
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.3079-3084
    • /
    • 2008
  • A fast response $CO_2$ analyzer has been developed for measuring the $CO_2$ concentration during transient condition of SI engine. The analyzer is based on the non-dispersive infrared absorption technique, electrical chopping system and water cooling system. The analyzer has good repeatability, linearity and permissible drift characteristic. Besides, it has 18ms with a response to measure the $CO_2$ concentration. The fast response $CO_2$ analyzer was applied to single cylinder SI engine and the $CO_2$ emission was examined during engine start. Simultaneously, the standard exhaust gas analyzer, which has slow response time, was used for considering the engine-out $CO_2$ characteristic. The developed analyzer showed much faster responsive characteristic than that of a standard analyzer and made cycle by cycle exhaust gas analysis possible. The transient engine operating characteristics will be estimated and the transient behaviors on engine-out emission and performance will be improved.

  • PDF

Thermal post-buckling analysis of uniform slender functionally graded material beams

  • Anandrao, K. Sanjay;Gupta, R.K.;Ramchandran, P.;Rao, G. Venkateswara
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.545-560
    • /
    • 2010
  • Two or more distinct materials are combined into a single functionally graded material (FGM) where the microstructural composition and properties change gradually. Thermal post-buckling behavior of uniform slender FGM beams is investigated independently using the classical Rayleigh-Ritz (RR) formulation and the versatile Finite Element Analysis (FEA) formulation developed in this paper. The von-Karman strain-displacement relations are used to account for moderately large deflections of FGM beams. Bending-extension coupling arising due to heterogeneity of material through the thickness is included. Simply supported and clamped beams with axially immovable ends are considered in the present study. Post-buckling load versus deflection curves and buckled mode shapes obtained from both the RR and FEA formulations for different volume fraction exponents show an excellent agreement with the available literature results for simply supported ends. Response of the FGM beam with clamped ends is studied for the first time and the results from both the RR and FEA formulations show a very good agreement. Though the response of the FGM beam could have been studied more accurately by FEA formulation alone, the authors aim to apply the RR formulation is to find an approximate closed form post-buckling solutions for the FGM beams. Further, the use of the RR formulation clearly demonstrates the effect of bending-extension coupling on the post-buckling response of the FGM beams.

Active control of optimization process in lens design by using Lagrange's undetermined multiplier method (광학설계의 최적화에서 Lagrange 부정승수법을 이용한 능동적 제어)

  • 조용주;이종웅
    • Korean Journal of Optics and Photonics
    • /
    • v.12 no.2
    • /
    • pp.109-114
    • /
    • 2001
  • Optical system has some optical and mechanical constraints. The constraints should be preserved in optimization of optical system. For the purpose, the constraints are combined with the merit function by using Lagrange's undetermined multipliers. We propose an active optimization control by using the fact that the errors of constraints are corrected with higher priority than the other errors of the merit function. In this control, the errors which have large contribution to the merit function are converted into constraints. At that time, if the errors are corrected at once, the optimization will be unstable because of their non-linearity. Hence we introduce a target rate which represents a fraction of error to be corrected, and the errors are corrected progressively. An optimization program was developed on the bases of the proposed active control, and applied to design a photographic lens system. By using the active control, we could get better results compared with conventional damped least squares method. ethod.

  • PDF

A study on the technology of in-mold punching process for integrated hole piercing of plastic hollow parts (플라스틱 중공부품의 일체화 성형을 위한 인몰드 펀칭 공정기술에 관한 연구)

  • Lee, Sung-Hee
    • Design & Manufacturing
    • /
    • v.15 no.4
    • /
    • pp.1-7
    • /
    • 2021
  • A study on in-mold punching technology for hole piercing during molding of hollow plastic parts was conducted. Considering the non-linearity of the HDPE plastic material, mechanical properties were obtained according to the change in temperature and load speed. A standard specimen for the in-mold punching test was designed to implement the in-mold punching process, and the specimen was obtained through injection molding. In order to analyze the influence of process variables during in-mold punching, an in-mold punching mold capable of controlling variables such as temperature and support pressure of the specimen was designed and manufactured. Mold heating characteristics were confirmed through finite element analysis, and punching simulations for changes in process conditions were performed to analyze punching characteristics and reflected in the experiment. Through simulations and experiments, it was found that the heating temperature, punch shape, punching speed, and pressure of the back side of the specimen were very important during in-mold punching of HDPE materials, and optimal conditions were acquired within a given range.