• 제목/요약/키워드: mechanical hardness

검색결과 2,944건 처리시간 0.036초

Sliding Wear of Alumina-silicon Carbide Nanocomposites

  • Kim, Seung-Ho;Lee, Soo-Wohn;Kim, Yun-Ho;Riu, Doh-Hyung;Tohru Sekino;Koichi Niihara
    • 한국세라믹학회지
    • /
    • 제38권12호
    • /
    • pp.1080-1084
    • /
    • 2001
  • Alumina-based nanocomposites have improved mechanical properties such as hardness, fracture toughness and fracture strength compared to monolithic ceramics. In this study, alumina with 5 vol% of nanosized SiC was sintered by a hot pressing technique at 1600$\^{C}$, 30 MPa for 1h in an argon gas atmosphere. Microstructures and mechanical properties in alumina-SiC nanocomposite were investigated. Moreover, tribological properties in air and water were compared each other. Relationships of wear properties with mechanical properties such as hardness, strength, and fracture toughness as well as microstructure were studied. Based on experimental results it was found that nanosized SiC retarded grain growth of matrix alumina. Mechanical properties such as hardness, fracture toughness and strength were improved by the addition of nanosized SiC in alumina. Improved mechanical properties resulted in increased sliding wear resistance. Tribological behavior of nanocomposites in water seemed to be governed by abrasive wear.

  • PDF

SiC 첨가한 ZrO2의 기계적 특성에 대한 와이블 통계 해석 (Weibull Statistical Analysis on Mechanical Properties in ZrO2 with SiC Additive)

  • 남기우;김선진;김대식
    • 대한기계학회논문집A
    • /
    • 제39권9호
    • /
    • pp.901-907
    • /
    • 2015
  • 비커스 경도 실험은 세라믹스 재료의 경도를 특성화하는데 사용되는 일반적인 실험법이다. 그러나 경도도 하나의 확률변수로 취급하는 것이 일반적이다. 본 연구의 목적은 단상 $ZrO_2$ 와 SiC 첨가한 $ZrO_2/SiC$ 복합 세라믹스의 굽힘강도와 비커스 경도의 통계적 성질을 조사하는 것이다. 본 연구에서는 와이블 통계 해석에 기초하여 그들의 결과를 특성치와 변동을 비교 고찰하였다. 굽힘강도 및 비커스 경도는 모두 와이블 분포에 비교적 잘 적합할 수 있음을 알았다. 또한 단상 $ZrO_2$ 와 SiC 첨가한 $ZrO_2/SiC$ 복합 세라믹스와 그들의 열처리재에 대한 비커스 경도의 확률분포에 대한 척도 및 형상 파라메터 값을 평가하였다.

Effects of metal dopant content on mechanical properties of Ti-Cu-N films

  • Hyun S. Myung;Lee, Hyuk M.;Kim, Sang S.;Jeon G. Han
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2001년도 추계학술발표회 초록집
    • /
    • pp.37-37
    • /
    • 2001
  • TiN coatings were applied for VarIOUS application fields, because of a good wear-resistance and a high hardness. Typically, TiN thin films show the hardness of 25GPa and friction coefficient of 0.6. However, in many field, one is looking for a more improved tool which has low friction coefficient and high wear resistance. The main motivation of this study is to characterize the influence of copper dopant content on TiN thin films. Ti-Cu-N thin films were deposited onto D2 steel substrates by PVD processing with various magnetron current densities (Cu contents). In this work, we synthesized titanium nitride films similar with reported typical titanium nitride films and synthesized Ti-Cu-N thin films with the addition of elemental copper which is measured improved hardness more than pure TiN films with copper content variables. This films has preferred oriented films of (111) direction. In addition, It was found that there is a strong correlation between content of various metal and film characteristics such as preferred orientation, grain size, hardness and friction coefficient and so, in future study, improved mechanical properties of TiN films can be controlled by change in target current density. The Ti-Cu-N film will show apparent hardness improvement and mechanical properties enhancement, when doping element is added onto TiN thin films. Film structure, chemical composition, mechanical properties were investigated by means of X-ray diffraction(XRD), scanning electron microscopy(SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy(EDS), wear resistance tester and nanohardness tester.

  • PDF

전기자극의 시술에 따른 일회용 호침의 안전성 및 안정성 연구 (Assessment of Acupuncture Needle Safety and Stability on Applying Electroacupuncture)

  • 박경무;송윤경;임형호
    • 한방재활의학과학회지
    • /
    • 제19권1호
    • /
    • pp.187-199
    • /
    • 2009
  • Objectives : The electroacupuncture was generally has been used in oriental medicine doctors. In recent years, there have been a few studies about safety and stability of acupuncture needle in itself, but then again research of acupuncture needle safety and stability on applying electroacupuncture have been insignificant. Therefore we investigated the safety and change in mechanical characteristic of acupuncture needle in electroacupuncture therapy. Methods : We observed mechanical characteristic change by SEM(Scanning Electron Microscope) and EDX(Energy Dispersive X-ray Spectroscopy), evaluated the hardness by vickers hardness tester. We used MTT assay and cell stain to study about biocompatibility of electroacupuncture. Results : In this study, any corrosion of material, alternation of elements, and change of hardness were not observed in surface analysis using SEM and EDX. In cytotoxity evaluation using MTT assay and cell stain, cell survival rate was low when practicing the electroacupuncture for more than 3 hours. Conclusions : Change of mechanical property was not observed based on the test results using surface analysis and hardness estimation by the electroacupuncture. And considering the biocompatibility, electroacupuncture was thought to be safe in an hour based on cytotoxity evaluation using MTT assay and cell stain.

백련초분말과 승검초분말 첨가에 따른 식빵의 품질 특성 (Quality Characteristics of Bread with Added Angelica plant (Bakluncho) and Angelica Gigas (Senggumcho) Powders)

  • 전은례;박인덕
    • 대한가정학회지
    • /
    • 제44권3호
    • /
    • pp.163-169
    • /
    • 2006
  • The effects of adding Angelica plant (Bakluncho) and Angelica gigas (Senggumcho) powders on the quality characteristics of bread were investigated. The moisture, crude protein, ash, reducing sugar and vitamin C contents of Angelica plant (Bakluncho) powder were 7.78%, 6.07%, 7.37%, 6.13% and 50.10mg%, respectively, and of Angelica gigas (Senggumcho) powder were 8.69%, 12.28%, 5.15%, 2.21% and 108.00mg%, respectively. The lightness value decreased but the redness and yellowness values increased with the addition of Angelica plant (Bakluncho) and Angelica gigas (Senggumcho) powders. The mechanical hardness of bread decreased with the addition of 3% of Angelica plant (Bakluncho) powder, but increased with the addition of 1% and 5% of Angelica plant (Bakluncho) powder. The mechanical hardness of bread decreased with the addition of 1%, 3% and 5% of Angelica gigas (Senggumcho) powder. In sensory characteristics, the crust color, crumb color, moistness and springiness decreased, but aroma and hardness increased with the addition of Angelica plant (Bakluncho) and Angelica gigas (Senggumcho) powders. The savory taste and overall quality of breads with 1% Angelica plant (Bakluncho) and 1% Angelica gigas (Senggumcho) powders were higher than without either powder. A negative correlation was observed between mechanical hardness and overall bread quality with the addition of Angelica plant (Bakluncho) powder, while a positive correlation (p<0.01) was observed with the addition of Angelica gigas (Senggumcho) powder.

Microstructure and Mechanical Properties of Cr-Mo Steels for Nuclear Industry Applications

  • Kim, Sung-Ho;Ryu, Woo-Seong;Kuk, Il-Hiun
    • Nuclear Engineering and Technology
    • /
    • 제31권6호
    • /
    • pp.561-571
    • /
    • 1999
  • Microstructure and mechanical properties of five Cr-Mo steels for nuclear industry applications have been investigated. Transmission electron microscopy, energy dispersive spectrometer, differential scanning calorimeter, hardness, tensile, and impact test were used to evaluate the Cr and W effect on the microstructure and mechanical properties. Microstructures of Cr-Mo steels after tempering are classified into three types : bainitic 2.25Cr-lMo steel, martensitic Mod.9Cr-lMo, HT9M, and HT9W steels, and dual phase HT9 steel. The majority of the precipitates were found to be M$_{23}$C$_{6}$ carbides. As minor phases, fine needle-like V(C,N), spherical NbC, fine needle-like Cr-rich Cr$_2$N, and Cr-rich M$_{7}$C$_3$were also found. Addition of 2wt.% W in Cr-Mo steels retarded the formation of subgrain and dissolution of Cr$_2$N precipitates. Hardness and ultimate tensile strength increased with increasing Cr content. Though Cr content of HT9W steel was lower than that of HT9 steel, the hardness of HT9W was higher due to the higher W content. W added HT9W steel had the highest ultimate tensile strength above $600^{\circ}C$. But impact toughness of W added steel (HT9W) and high Cr steel (HT9) was low.w.w.

  • PDF

치과주조용 Ti-X%Cu(X=2,5,10)합금의 미세조직 및 경도 (Microstructure and Hardness of Ti-X%Cu(X=2,5,10) Alloys for Dental Castings)

  • 정종현
    • 대한치과기공학회지
    • /
    • 제31권3호
    • /
    • pp.9-14
    • /
    • 2009
  • This study evaluated the mechanical properties of Ti-Cu alloys with the hope of developing an alloy for dental casting with better mechanical properties than unalloyed titanium. Ti-Cu alloys with four concentrations of Cu(2,5,10wt%) were made in an argon-arc melting furnace. The microstructure and micro-Vickers hardness were determined. X-ray diffraction pattern test was performed on the polished specimens. The microstructure of 2%Cu and 5%Cu alloys are shown acicular ${\alpha}Ti$ phase formed on the surfaces of previously formed $\beta$grains. The 10%Cu alloys has essentially a eutectoid structure; this structure includes lamella of ${\alpha}Ti$ and $Ti_2Cu$ phase that transformed from ${\alpha}Ti$ at the eutectoid temperature. The micro-Vickers hardness of CP Ti specimens was significantly(p<0.05) lower than that of any of the other alloys. Among the Ti-Cu alloys, the 10%Cu alloys exhibited a significantly(p<0.05) higher hardness value. but lower than that of Ti-6%Al-4%V alloy. From these results, it was concluded that new alloys for dental castings should be designed as Ti-Cu based alloys if other properties necessary for dental castings were obtained.

  • PDF

나노표면개질 용 초음파 진동자 설계 및 제작 (Design and Manufacturing of an Ultrasonic Waveguide for Nano-surface Treatment)

  • 김현세;이양래;임의수
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1115-1119
    • /
    • 2014
  • In this article, a 20 kHz ultrasonic waveguide for nano-surface treatment was designed and manufactured. When designing the system, finite element analysis with ANSYS software was performed to find optimal dimensions of the waveguide, which can raise energy efficiency. Consequently an anti-resonance frequency of an Al waveguide with a piezoelectric actuator was 20 kHz, which predicted the experimentally obtained value of 18 kHz well. For the assessment of the performance, Steel Use Stainless (SUS) 304 and chromium molybdenum steel (SCM) 435 specimens were tested. Cross-sectional microscopies of SUS304 were taken and they showed that the treated thickness was $30{\mu}m$. Additionally, hardness tests of SCM435 were done and the hardness before the process was 14.0 Rockwell Hardness-C scale (HRC) and after the process was 20.5 HRC, respectively, which means 46% increase. Considering these results, the developed ultrasonic system is thought to be effective in the nano-surface treatment process.

싱글모드 파이버 레이저를 이용한 Cu 와 Ni의 고속도 이종재료 용접부의 기계적 특성 (Mechanical Properties of Cu and Ni Dissimilar Welds by High Welding Speed Using Single-Mode Fiber Laser)

  • 이수진;김종도
    • Journal of Welding and Joining
    • /
    • 제32권3호
    • /
    • pp.81-88
    • /
    • 2014
  • As the industrial technology has been developed, a dissimilar welding has been received huge attention in various engineering fields. To understand the mechanical properties and possibility of applications of dissimilar metals joining, the laser welding of Cu and Ni dissimilar metals was studied in this paper. Cu and Ni have differences in materials properties, and Cu and Ni make no intermetallic compounds according to typical binary phase of Cu and Ni system. In this study, lap welds of Cu and Ni dissimilar metals using single-mode fiber laser with high welding speed were tried, and mechanical properties of the welds zone were evaluated using a Vickers hardness test and a tensile shear test. To recognize the relation between hardness and tensile shear load, weld fusion zone of interface weld area were observed. And it was confirmed that the ultra-high welding speed could make good weld beads and higher hardness parts had higher tensile shear load under the all conditions.

Effects of Tungsten Addition on Tensile Properties of a Refractory Nb-l8Si-l0Ti-l0Mo-χW (χ=0, 5, 10 and 15 mot.%) In-situ Composites at 1670 K

  • 김진학;Tatsuo Tabaru;Hisatoshi Hirai
    • 소성∙가공
    • /
    • 제8권3호
    • /
    • pp.233-233
    • /
    • 1999
  • To investigate the effect of tungsten addition on mechanical properties, we prepared refractory (62χ)Nb-18Si-l00Mo-l0Ti-χW (χ=0, 5, 10 and 15 mol.%) in-situ composites by the conventional arc-casting technique, and then explored the microstructure, hardness and elastic modulus at ambient temperature and tensile properties at 1670 K. The microstructure consists of relatively fine (Nb, Mo, W, Ti)/sub 5/Si₃, silicide and a Nb solid solution matrix, and the fine eutectic microstructure becomes predominant at a Si content of around 18 mol.%. The hardness of (Nb, Mo, W, Ti(/sub 5/Si₃, silicide in a W-free sample is 1680 GPa, and goes up to 1980 GPa in a W 15 mol.% sample. The hardness, however, of Nb solid solution does not exhibit a remarkable difference when the nominal W content is increased. The elastic modulus shows a similar tendency to the hardness. The optimum tensile properties of the composites investigated are achieved at W 5 mol.% sample, which exhibits a relatively good ultimate strength of 230 MPa and an excellent balance of yield strength of 215 MPa, and an elongation of 3.7%. The SEM fractography generally indicates a ductile fracture in the W-free sample, and a cleavage rupture in W-impregnated ones.