• Title/Summary/Keyword: mechanical device

Search Result 2,854, Processing Time 0.033 seconds

Effects of Accumulator Heat Exchanger on the Performance of a Refrigeration System (열교환기 내장형 어큐뮬레이터가 냉동시스템의 성능에 미치는 영향에 관한 연구)

  • Kang Hoon;Choi Kwang-Min;Park Cha-Sik;Kim Yong-Chan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.418-425
    • /
    • 2006
  • An AHX (Accumulator Heat exchanger) consists of a commercial accumulator and an inner heat exchanger located inside of the accumulator. The AHX is used in multi air-conditioners to assure that liquid-phase refrigerant enters into the expansion device. This purpose is achieved by heat transfer between the refrigerant leaving the evaporator and the refrigerant leaving the condenser. In this study, the effects of AHX on the performance of a refrigeration system using R-22 were measured and the test results were analyzed. The operating characteristics of the refrigeration system with the AHX are considerably different from those without the AHX. Therefore, it is required to determine optimum refrigerant charge and optimum operating conditions when the AHX is used in the refrigeration system having a constant flow-area expansion device such as capillary tube.

Development of microfluidic green algae cell counter based on deep learning (딥러닝 기반 녹조 세포 계수 미세 유체 기기 개발)

  • Cho, Seongsu;Shin, Seonghun;Sim, Jaemin;Lee, Jinkee
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.41-47
    • /
    • 2021
  • River and stream are the important water supply source in our lives. Eutrophication causes excessive green algae growth including microcystis, which makes harmful to ecosystem and human health. Therefore, the water purification process to remove green algae is essential. In Korea, green algae alarm system exists depending on the concentration of green algae cells in river or stream. To maintain the growth amount under control, green algae monitoring system is being used. However, the unmanned, small and automatic monitoring system would be preferable. In this study, we developed the 3D printed device to measure the concentration of green algae cell using microfluidic droplet generator and deep learning. Deep learning network was trained by using transfer learning through pre-trained deep learning network. This newly developed microfluidic cell counter has sufficient accuracy to be possibly applicable to green algae alarm system.

Nonlinear semi-active/passive retrofit design evaluation using incremental dynamic analysis

  • Rodgers, Geoffrey W.;Chase, J. Geoffrey;Roland, Thomas;Macrae, Gregory A.;Zhou, Cong
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.109-120
    • /
    • 2022
  • Older or damaged structures can require significant retrofit to ensure they perform well in subsequent earthquakes. Supplemental damping devices are used to achieve this goal, but increase base shear forces, foundation demand, and cost. Displacement reduction without increasing base shear is possible using novel semi-active and recently-created passive devices, which offer energy dissipation in selected quadrants of the force-displacement response. Combining these devices with large, strictly passive energy dissipation devices can offer greater, yet customized response reductions. Supplemental damping to reduce response without increasing base shear enables a net-zero base shear approach. This study evaluates this concept using two incremental dynamic analyses (IDAs) to show displacement reductions up to 40% without increasing base shear, more than would be achieved for either device alone, significantly reducing the risk of response exceeding the unaltered structural case. IDA results lead to direct calculation of reductions in risk and annualized economic cost for adding these devices using this net-zero concept, thus quantifying the trade-off. The overall device assessment and risk analysis method presented provides a generalizable proof-of-concept approach, and provides a framework for assessing the impact and economic cost-benefit of using modern supplemental energy dissipation devices.

Improvement of Mechanical Properties of Epoxy Composites Using NH2-HNT Manufactured by Dry Coating Device as Filler (건식코팅장치를 이용하여 제조한 NH2-HNT를 충진재로 응용한 에폭시 복합체의 기계적 물성 향상)

  • Moon il Kim
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.27 no.2_2
    • /
    • pp.371-375
    • /
    • 2024
  • Epoxy resins are widely used in various fields due to their high adhesion, mechanical strength, and solvent resistance. However, as the volume decreases during the hardening process and the cooling process after hardening, stress is generated and when an external force is applied, the brittle material exhibits destruction behavior. To complement this, research has been conducted using inorganic nanofillers such as halloysite nanotube(HNT). HNT has a nanotube structure with the chemical formula of Al2Si2O5(OH)4·nH2O and is a natural sediment of aluminosilicate. It has been used as additive to improve the mechanical properties of epoxy composites with exchange of amine group as a terminal functional group. In order to simplify complicated procedures of common wet method, a dry coating machine was designed and used for amine group exchange in previous research. In this study, they were applied as filler in epoxy composites, and mechanical properties such as tensile strength and flexural strength of composites were examined.

Effects of Geometric and Flow Conditions on 3-dimensional Hydrodynamic Focusing (3 차원 유체역학 집속에 대한 채널 형상 및 유동 조건의 매개변수 연구)

  • Han, Kyung-Sup;Kim, Dong-Sung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.1
    • /
    • pp.61-66
    • /
    • 2010
  • In our previous work, 3-dimensional hydrodynamic focusing microfluidic device (3D-HFMD) has been developed with the help of locally increased aspect ratio of thickness to width without any horizontal separation wall. In this study, we have investigated 3-dimensional hydrodynamic focusing behaviors inside the 3D-HFMD according to the various geometric and flow conditions. The parametric study has been extensively carried out for the effects of geometric and flow conditions on 3-dimensional hydrodynamic focusing with both 3D-HFMD and previous microfluidic device design based on three-dimensional computational fluid dynamics (CFD) simulations. The CFD simulations suggested the proper design window of channel geometry and flow conditions.

Shape Optimization of a Hole for Water Jetting in a Spudcan for a Jack-up Rig (잭업리그 스퍼드캔의 물 분사용 홀 형상 최적화)

  • Seong, Jeong Hyeon;Han, Dong Seop;Park, Young Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.337-342
    • /
    • 2016
  • A spudcan is mounted on the lower leg of the jack-up rig, a device for preventing a rollover of a structure and to support the structure in a stable sea floor. At the time of inserting the surface of the spud can to penetrate when the sand layer is stable and smoothly pulled to the clay layer, and at that time of recovery when uploading the spud can is equipped with a water injection device. In this study, it is significant to optimize the shape of pipelines holes for water injection device and it was set in two kinds of shape, the oval and round. Interpretation of the subject into the site of Gulf of Mexico offshore Wind Turbine Installation Vessels (WTIV) was chosen as a target platform. Using the ANSYS Workbench commercial programs, optimal design was conducted. The results of this study can be applied to the hole-shaped design of various marine structures.

Performance Analysis of High Efficiency Co-generation System Using the Experimental Design Method (실험계획법을 이용한 고효율 소형 열병합 시스템 성능 해석)

  • Ryu, Mi-Ra;Lee, Jun-Sik;Park, Jeong-Ho;Lee, Seong-Beom;Lee, Dae-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.3
    • /
    • pp.20-25
    • /
    • 2012
  • As a kind of distributed energy system, the co-generation system based Diesel engine using after-treatment device was devised for its environmental friendly and economic qualities. It is utilized in that the electric power is produced by the generator connected to the Diesel engine, and waste heat is recovered from both the exhaust gases and the engine itself by the finned tube and shell & tube heat exchangers. An after-treatment device composed ceramic heater and DOC(Diesel Oxidation Catalyst) is installed at the engine outlet in order to completely reignite the unburned fuel from the Diesel engine. In this study, mutual relation of each experimental condition was derived through minimum number of experiment using Taguchi Design and ANOVA recently used in the various fields. It is found that the total efficiency (thermal efficiency plus electric power generation efficiency) of this system reaches maximum 94.4% which is approximately higher than that of the typical diesel engine exhaust heat recovery system.

The Design and Experiment of Piezoelectric Energy-Harvesting Device Imitating Seaweed (해조류를 모방한 압전 에너지 수확 장치의 설계와 실험)

  • Kang, Tae-Hun;Na, Yeong-Min;Lee, Hyun-Seok;Park, Jong-Kyu;Park, Tae-Gone
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.14 no.4
    • /
    • pp.73-84
    • /
    • 2015
  • Electricity generation using fossil fuels has caused environmental pollution. To solve this problem, research on new renewable energy sources (solar, wind power, geothermal heat, etc.) to replace fossil fuels is ongoing. These devices are able to generate power consistently. However, they have many weaknesses, such as high installation costs and limits to possible setup environments. Therefore, an active study on piezoelectric harvesting technology that is able to surmount the limitations of existing energy technologies is underway. Piezoelectric harvesting technology uses the piezoelectric effect, which occurs in crystals that generate voltage when stress is applied. Therefore, it has advantages, such as a wider installation base and lower technological costs. In this study, a piezoelectric harvesting device imitating seaweed, which has a consistent motion caused by fluid, is used. Thus, it can regenerate electricity at sea or on a bridge pillar, which has a constant turbulent flow. The components of the device include circuitry, springs, an electric generator, and balancing and buoyancy elements. Additionally, multiphysics analysis coupled with fluid, structure, and piezoelectric elements is conducted using COMSOL Multiphysics to evaluate performance. Through this program, displacement and electric power were analyzed, and the actual performance was confirmed by the experiment.

Treatment of the Superior Sagittal Sinus Thrombosis with the Mechanical Thrombectomy Using Stent-Retriever Device

  • Kim, Hoon;Kim, Seong Rim;Park, Ik Seong;Kim, Young Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.59 no.5
    • /
    • pp.518-520
    • /
    • 2016
  • Cerebral venous sinus thrombosisis an uncommon entity and its clinical presentations are highly variable. We present the case of superior sagittal sinus thrombosis. Although it was medical refractory, successfully treated with mechanical thrombectomy using the Solitaire FR device. A 27-year-old man who presented with venous infarction accompanied by petechial hemorrhage secondary to the superior sagittal sinus (SSS) thrombosis. Due to rapid deterioration despite of anticoagulation therapy, the patient was taken for endovascular treatment. We deployed the Solitaire FR device ($4{\times}20mm$) in the anterior portion of the thrombosed SSS, and it was left for ten minutes before the retraction. Thus, we removed a small amount of thrombus. But the sinus remained occluded. We therefore performed the thrombectomy using the same methods using the Solitaire FR ($6{\times}20mm$). Thus, we were successful in removing larger clots. Our case highlights not only that the mechanical thrombectomy using the Solitaire FR is effective in achieving revascularization both rapidly and efficiently available, but also that it might be another option in patients with cerebral venous sinus thrombosis who concurrently had rapid clinical deterioration with devastating consequences.

A Study on Pill Temperature Control method and Hydrogen Production with 2-step Thermochemical Cycle Using Dish Type Solar Thermal System (접시형 태양열 시스템을 이용한 2단계 열화학 싸이클의 수소 생산과 PID 온도 제어 기법 연구)

  • Kim, Chul-Sook;Kim, Dong-Yeon;Cho, Ji-Hyun;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.3
    • /
    • pp.42-50
    • /
    • 2013
  • Solar thermal reactor was studied for hydrogen production with a two step thermochemical cycle including T-R(Thermal Reduction) step and W-D(Water Decomposition) step. NiFe2O4 and Fe3O4 supported by monoclinic ZrO2 were used as a catalyst device and Ni powder was used for decreasing the T-R step reaction temperature. Maintaining a temperature level of about $1100^{\circ}C$ and $1400^{\circ}C$, for 2-step thermochemical reaction, is important for obtaining maximum performance of hydrogen production. The controller was designed for adjusting high temperature solar thermal energy heating the foam-device coated with nickel- ferrite powder. A Pill temperature control system was designed based on 2-step thermochemical reaction experiment data(measured concentrated solar radiation and the temperature of foam device during experiment). The cycle repeated 5 times, ferrite conversion rate are 4.49~29.97% and hydrogen production rate is 0.19~1.54mmol/g-ferrite. A temperature controller was designed for increasing the number of reaction cycles related with the amount of produced hydrogen.