DOI QR코드

DOI QR Code

Development of microfluidic green algae cell counter based on deep learning

딥러닝 기반 녹조 세포 계수 미세 유체 기기 개발

  • Cho, Seongsu (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Shin, Seonghun (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Sim, Jaemin (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Lee, Jinkee (School of Mechanical Engineering, Sungkyunkwan University)
  • Received : 2021.08.03
  • Accepted : 2021.08.22
  • Published : 2021.08.31

Abstract

River and stream are the important water supply source in our lives. Eutrophication causes excessive green algae growth including microcystis, which makes harmful to ecosystem and human health. Therefore, the water purification process to remove green algae is essential. In Korea, green algae alarm system exists depending on the concentration of green algae cells in river or stream. To maintain the growth amount under control, green algae monitoring system is being used. However, the unmanned, small and automatic monitoring system would be preferable. In this study, we developed the 3D printed device to measure the concentration of green algae cell using microfluidic droplet generator and deep learning. Deep learning network was trained by using transfer learning through pre-trained deep learning network. This newly developed microfluidic cell counter has sufficient accuracy to be possibly applicable to green algae alarm system.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 생태모방 기반 환경오염관리 기술개발사업의 지원을 받아 연구되었습니다.(2019002790003)

References

  1. Park, H.-G., 2014, "Causes of occurrence of algae and countermeasures to reduce ", 412, 17-21
  2. Kim, B.-C., 2017, "Causes and countermeasures of Green algae phenomenon", 50, 6, 8-14
  3. Kim, B.-C., Sa, S.-H., Kim, M., Lee, Y. and Kim, J.-K., 2007, "The Limiting Nutrient of Eutrophication in Reservoirs of Korea and the Suggestion of a Reinforced Phosphorus Standard for Sewage Treatment Effluent", 23, 4, 512-517
  4. Falconer, I. R., 1993, "Measurement of toxins from blue-green algae in water and foodstuffs", 1, 165-175
  5. Dawson, R. M., 1998, "The toxicology of microcystins", 36, 7, 953-62 https://doi.org/10.1016/S0041-0101(97)00102-5
  6. Environment, M. o., 2008, "Manual for management of algae alarm system",
  7. Cheng, X., Liu, Y. S., Irimia, D., Demirci, U., Yang, L., Zamir, L., Rodriguez, W. R., Toner, M. and Bashir, R., 2007, "Cell detection and counting through cell lysate impedance spectroscopy in microfluidic devices", 7, 6, 746-55 https://doi.org/10.1039/b705082h
  8. Song, Y., Zhang, H., Chon, C. H., Chen, S., Pan, X. and Li, D., 2010, "Counting bacteria on a microfluidic chip", 681, 1, 82-86 https://doi.org/10.1016/j.aca.2010.09.035
  9. Kim, K. B., Chun, H., Kim, H. C. and Chung, T. D., 2009, "Red blood cell quantification microfluidic chip using polyelectrolytic gel electrodes", 30, 9, 1464-1469 https://doi.org/10.1002/elps.200800448
  10. Wang, Z., Chin, S. Y., Chin, C. D., Sarik, J., Harper, M., Justman, J. and Sia, S. K., 2010, "Microfluidic CD4+ T-cell counting device using chemiluminescence-based detection", 82, 1, 36-40 https://doi.org/10.1021/ac902144w
  11. Klein, A. M., Mazutis, L., Akartuna, I., Tallapragada, N., Veres, A., Li, V., Peshkin, L., Weitz, D. A. and Kirschner, M. W., 2015, "Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells", 161, 5, 1187-1201 https://doi.org/10.1016/j.cell.2015.04.044
  12. Macosko, E. Z., Basu, A., Satija, R., Nemesh, J., Shekhar, K., Goldman, M., Tirosh, I., Bialas, A. R., Kamitaki, N., Martersteck, E. M., Trombetta, J. J., Weitz, D. A., Sanes, J. R., Shalek, A. K., Regev, A. and McCarroll, S. A., 2015, "Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets", 161, 5, 1202-1214 https://doi.org/10.1016/j.cell.2015.05.002
  13. Rane, T. D., Zec, H. C., Puleo, C., Lee, A. P. and Wang, T.-H., 2012, "Droplet microfluidics for amplification-free genetic detection of single cells", 12, 18, 3341-3347 https://doi.org/10.1039/c2lc40537g
  14. Lu, H., Caen, O., Vrignon, J., Zonta, E., El Harrak, Z., Nizard, P., Baret, J. C. and Taly, V., 2017, "High throughput single cell counting in droplet-based microfluidics", 7, 1, 1366 https://doi.org/10.1038/s41598-017-01454-4
  15. Zhang, H., Chon, C. H., Pan, X. and Li, D., 2009, "Methods for counting particles in microfluidic applications", 7, 6, 739 https://doi.org/10.1007/s10404-009-0493-7
  16. Khorshidi, M. A., Rajeswari, P. K. P., Wahlby, C., Joensson, H. N. and Svahn, H. A., 2014, "Automated analysis of dynamic behavior of single cells in picoliter droplets", 14, 5, 931-937 https://doi.org/10.1039/c3lc51136g
  17. Cadena-Herrera, D., Esparza-De Lara, J. E., Ramirez-Ibanez, N. D., Lopez-Morales, C. A., Perez, N. O., Flores-Ortiz, L. F. and Medina-Rivero, E., 2015, "Validation of three viable-cell counting methods: Manual, semi-automated, and automated", 7, 9-16 https://doi.org/10.1016/j.btre.2015.04.004
  18. Al-Halah, Z., Rybok, L. and Stiefelhagen, R., 2016, "Transfer metric learning for action similarity using high-level semantics", 72, 82-90 https://doi.org/10.1016/j.patrec.2015.07.005