• Title/Summary/Keyword: mechanical design

Search Result 15,392, Processing Time 0.037 seconds

Mechanical Design of Deepwater Pipeline Wall Thickness Using the Recent Rules (최신 설계규정에 의한 심해 배관 두께의 기계적 설계)

  • Choi, Han-Suk;Lee, Jong-Hyun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.17-22
    • /
    • 2002
  • Mechanical design of a deepwater pipeline wall thickness was performed by using the recent design rules. Characteristics and limitations of the new design rules were identified through a case study of a deepwater oil pipeline in the Gulf of Mexico. A design procedure was established for mechanical design of deepwater pipeline wall thickness. Comparison of the new API and DNV codes are presented.

  • PDF

DESIGN EVALUATION OF NO SPIN DIFFERENTIAL MODELS USING THE AXIOMATIC APPROACH

  • Pyun, Y.S.;Jang, Y.D.;Cho, I.H.;Park, J.H.;Combs, A.;Lee, Y.C.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.595-601
    • /
    • 2006
  • Two No Spin Differential(NSD) models were benchmarked for a project of Dual-Use Technology. The Axiomatic approach is utilized to evaluate the designs of the models. The Independence Axiom is satisfied at the top level of design but not at the second level, which implies the design exhibits coupling and will admit design improvements. The detailed process of design evaluation is described. It is shown that it is possible to develop a unique and evolutionary NSD design by solving the problems that cause coupling within two models.

Design of a Moving-magnet Electromagnetic Actuator for Fast Steering Mirror through Finite Element Simulation Method

  • Long, Yongjun;Mo, Jinqiu;Wei, Xiaohui;Wang, Chunlei;Wang, Shigang
    • Journal of Magnetics
    • /
    • v.19 no.3
    • /
    • pp.300-308
    • /
    • 2014
  • This paper develops a moving-magnet electromagnetic actuator for fast steering mirror (FSM). The actuator achieves a reasonable compromise between voice coil actuator and piezoelectric actuator. The stroke of the actuator is between the strokes of a piezoelectric actuator and a voice coil actuator, and its force output is a linear function of air gap and excitation current within our FSM travel range. Additionally, the actuator is more reliable than voice coil actuator as the electrical connection in the actuator is static. Analytically modeling the actuator is difficult and time-consuming. Alternatively, numerous finite element simulations are carried out for the actuator analysis and design. According to the design results, a real prototype of the actuator is fabricated. An experimental test system is then built. Using the test system, the force output of the fabricated actuator is evaluated. The test results validate the actuator analysis and design.

Improved transient response design of MRACS

  • Oki, toshitaka;Shin, Seungin;Tanaka, Kanya;Shimizu, Akira;Shibata, Satoru
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.488-493
    • /
    • 1994
  • The global stability of model reference adaptive control system (MRACS) in the ideal case was resolved in the 1980's. Hoever the improvement of the transient, behaviour of MRACS has not been discussed sufficiently even in the ideal case. Only a few attempts have so far been made at the application of MRACS to the practical systems in contrast to the theoretical systematization. Therefore, when we consider the practical usage of MRACS it is necessary to develop an improved design scheme with respect to transient behaviour. In this paper, we propose two design schemes improving transient behaviour of MRACS by mollifying the input synthesis in the conventional design scheme of MRACS. We present a design scheme of MRACS in which we utilize the design approach of variable structure system(VSS). After describing the above design scheme, we also propose the improved design scheme in which we introduce the dead-zone decided by the magnitude of the output-error between the plant and the reference model. The effectiveness of the proposed two design schemes are shown through computer simulations. As the results, by using these methods, the convergence of the transient response is greatly improved in comparison with the conventional one.

  • PDF

Recent Advances in Fluid Film Bearings and Dampers for Turbomachinery (터보기계에 적용되는 유체 윤활 베어링 및 댐퍼의 최신 연구 동향)

  • Yi, Howon;Jung, Hyunsung;Kim, Kyuman;Lee, Chanwoo;Lim, Homin;Sin, Seki;Choi, Seungho;Ryu, Keun
    • Tribology and Lubricants
    • /
    • v.36 no.4
    • /
    • pp.215-231
    • /
    • 2020
  • The paper presents extensive survey and review of experimental and analytical researches on fluid film bearings and squeeze film dampers (SFDs) for turbomachinery available in open literature (major archival international journals) published recently (2018 and 2019 only). Over 60 published research works are reviewed based on the research topics and objectives, the types of bearings, size of bearings, and main design parameters with a brief summary of experiments and/or predictions in each work. Some important findings and general observations about the experimental and/or predictive data are also presented. There are several major trends observed throughout the survey. A large portion of the papers focuses on bearing surface textures and effect of operating and assembly conditions on static and/or dynamic forced performances, as well as bearing surface roughness and wear patterns. Researches on geometry of orifices and recesses in hydrostatic (or hybrid) bearings, as well as bearing system stability predictions using thermohydrodynamic analysis and computational fluid dynamics (CFD), are considered as significant topics. Studies on SFDs mainly focus on experimental identification of force coefficients for various SFD geometries and sealing conditions. Reliable experiments of fluid film bearings and SFDs along with the development of experimentally benchmarked predictive tools enable reinforcement of the path for reliable implementations of the bearing components into high performance rotating machinery operating at extreme and harsh conditions. The extensive list of sources of recent experiments in the available open literature is a welcome addition to the analytical community to gauge the accuracy of predictive tools.