• 제목/요약/키워드: mechanical contact

검색결과 3,197건 처리시간 0.025초

접촉면에서 모든 적합조건을 만족시키는 동적인 접촉현상의 해법 (Dynamic Contact Analysis Satisfying All the Compatibility Conditions on the Contact Surface)

  • 이기수
    • 대한기계학회논문집
    • /
    • 제19권5호
    • /
    • pp.1243-1250
    • /
    • 1995
  • For the numerical solution of frictional dynamic contact problems, correct contact points and displacements are determined by iteratively reducing the displacement error vector monotonically toward zero And spurious oscillations are prevented from the solution by enforcing the velocity and acceleration compatibilities of the contact points with the corresponding error vectors. Numerical simulations are conducted to demonstrate the accuracy of the solution and the necessity of the velocity and acceleration compatibilities on the contact surface.

기계 조인트의 전단 컨택 특성 측정 (Measurement of Shear Contact Characteristics on Mechanical Joints)

  • 이철희
    • 한국소음진동공학회논문집
    • /
    • 제18권8호
    • /
    • pp.849-855
    • /
    • 2008
  • 다양한 조임 조건에서 기계적 조인트의 컨택 특성 파라미터를 유도하기 위하여 컨택 공진을 기반으로 하는 실험적 방법을 개발하였다. 기계적 조인트의 전단 컨택 강성과 감쇠의 파라미터는 접촉 표면간의 표면 처리, 윤활 유무, 그리고 조임력과 전단력의 의한 영향과 같은 여러 가지 물리적 조인터 파라미터와 연계하여 고찰하였다. 제안된 실험적 방법을 사용하여 전단 컨택 강성 값은 조임력과 전단력이 커짐에 따라 증가하는 것을 발견하였다. 또한 컨택 감쇠 비 값은 대부분 조임력과 상관없이 일정 값을 나타내지만 전단력이 커짐에 따라 감소하였다. 추가로, 전단 강성 값과 컨택 감쇠 비는 매끄러운 표면에서보다 거친 표면에서 더 크게 나타남을 알 수 있었다.

표면막과 표면거칠기가 접촉 저항에 미치는 영향 (Effect of Surface Film and Surface Roughness on Contact Resistance)

  • 이현철;이보라;유용훈;조용주
    • Tribology and Lubricants
    • /
    • 제35권1호
    • /
    • pp.16-23
    • /
    • 2019
  • In this study, we aim to analyze the effects of both contact layer properties and surface roughness on contact resistance. The contact has a great influence on performance in terms of electrical conduction and heat transfer. The two biggest factors determining contact resistance are the presence of surface roughness and the surface layer. For this reason we calculated the contact resistance by considering both factors simultaneously. The model of this study to calculate contact resistance is as follows. First, the three representative surface parameters for the GW model are obtained by Nayak's random process. Then, the apparent contact area, real contact area, and contact number of asperities are calculated using the GW model with the surface parameters. The contact resistance of a single surface layer is calculated using Mikic's constriction equation. The total contact resistance is approximated by the parallel connection between the same asperity contact resistances. The results of this study are as follows. The appropriate thickness with reduction effect for contact resistance is determined according to the difference in conductivity between the base layer and surface layer. It was confirmed that the standard deviation of surface roughness has the greatest influence on surface roughness parameters. The results of this study will be useful for selecting the surface material and surface roughness when the design considering the contact resistance is needed.

A New FFT Technique for the Analysis of Contact Pressure and Subsurface Stress in a Semi-Infinite Solid

  • Cho, Yong-Joo;Koo, Young-Pil;Kim, Tae-Wan
    • Journal of Mechanical Science and Technology
    • /
    • 제14권3호
    • /
    • pp.331-337
    • /
    • 2000
  • A numerical procedure for contact analysis and calculating subsurface stress was developed. The procedure takes the advantage of signal processing technique in frequency domain to achieve shorter computing time. Boussinesq's equation was adopted as a response function in contact analysis. The validity of this procedure was proved by comparing the numerical results with the exact solutions. The fastness of this procedure was also compared with other algorithm.

  • PDF

Helical gear multi-contact tooth mesh load analysis with flexible bearings and shafts

  • Li, Chengwu;He, Yulin;Ning, Xianxiong
    • Structural Engineering and Mechanics
    • /
    • 제55권4호
    • /
    • pp.839-856
    • /
    • 2015
  • A multi-contact tooth meshing model for helical gear pairs considering bearing and shaft deformations is proposed. First, to easily incorporate into the system model, the complicated Harris' bearing force-displacement relationship is simplified applying a linear least square curve fit. Then, effects of shaft and bearing flexibilities on the helical gear meshing behavior are implemented through transformation matrices which contain the helical gear orientation and spatial displacement under loads. Finally, true contact lines between conjugated teeth are approximated applying a modified meshing equation that includes the influence of tooth flank displacement on the tooth contact induced by shaft and bearing displacements. Based on the model, the bearing's force-displacement relation is examined, and the effects of shaft deformation and external load on the multi-contact tooth mesh load distribution are also analyzed. The advantage of this work is, unlike previous works to search true contact lines through time-consuming iterative strategy, to determine true contact lines between conjugated teeth directly with presentation of deformations of bearings and shafts.

有限要素法 에 의한 線型彈性體 의 特定摩擦接觸問題 에 대한 數値解析 (Numerical Analysis of a Class of Contact Problems Involving Friction Effects in Linear Elasticity by Finite Element Methods)

  • 송영준
    • 대한기계학회논문집
    • /
    • 제7권1호
    • /
    • pp.52-63
    • /
    • 1983
  • The purpose of the study is to find development of contact area, contact pressure and friction forces occurring at joints or connection areas inbetween structural members or mechanical parts. The problem has a pair of difficulties intrinsically; a constraint of displacement due to contact, and presence of work term by nonconservative friction force in the variational principle of the problem. Because of these difficulties, the variational principle remains in the form of inequality. It is resolved by penalty method and perturbation method making the inequality to an equality which is proper for computational purposes. A contact problem without friction is solved to find contact area and contact pressure, which are to be used as data for the analysis of the friction problem using perturbed variational principle. For numerical experiments, a Hertz problem, a rigid punch problem, and the latter one with friction effects are solved using $Q_2$-finite elements.

AE 센서를 이용한 헤드/디스크 틈새의 텁촉력 측정에 관한 실험적 연구 (An Experimental Study on Measurement of Contact Force of Head/Disk Interface Using Acoustic Emission Sensor)

  • 김지훈;김도형;황평
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.278-284
    • /
    • 1998
  • In order to measure the real contact force between head and disk on hard disk drive quantitatively, many technique of measurement have been developed. Acoustic Emission Sensor can be used for detect elastic energy of head/disk contact as arms value. In this study using pencil breaking test is proposed for finding contact force using transfer function between calibrated force and real contact force. And real AE data of subambient and tripad slider shows bending and torsional mode and their energy are dominant in hard disk and head contact.

  • PDF

반무한체 표면아래의 소성변형을 고려한 3차원 탄소성 접촉해석 (3-Dimensional Elastic-Plastic Contact Analysis Considering Subsurface Plastic Strain in a Half-Space)

  • 조용주;문길환;이상돈
    • Tribology and Lubricants
    • /
    • 제24권2호
    • /
    • pp.90-95
    • /
    • 2008
  • An elastic-plastic contact analysis is developed using a semi-analytical method. The elastic contact is solved within a Hertz theorem. The reciprocal theorem with initial strains is then introduced, to express the surface geometry as a function of contact stress and plastic strains. The irreversible nature of plasticity leads to an incremental formulation of the elastic-plastic contact problem, and an algorithm to solve this problem is set up. Closed form expression, which give residual stresses and surface displacements from plastic strains, are obtained by integration of the reciprocal theorem. The distribution of contact stress, residual stress and plastic strain are obtained by the changed surface geometry.

곡면 다듬질에서 접촉해석에 근거한 유연공우 경로 설정 (Determination of Flexible Tool Path in Curved Surface Finishing Based on Contact Analysis)

  • 조성산;이승영;유용균
    • 한국정밀공학회지
    • /
    • 제17권11호
    • /
    • pp.69-74
    • /
    • 2000
  • Roughness of curved surfaces finished with flexible tools depends on the tool/work contact pressure and area. In this study, non-Hertzian closely conforming elastic contact theory is employed to analyze the tool/work contact and to generate a tool path producing a constant pressure at initial contact points. Finishing experiments on curved surfaced are conducted using the tool path. For comparison, curved surface finishing is also performed along the tool path producing a constant tool/work interference depth. It is demonstrated that the tool path of constant contact pressure improves the finished surface roughness.

  • PDF

볼군의 다수 접촉점이 접촉저항에 미치는 영향 (Effect of Multiple Contact Spots Simulated by Array of Balls on Contact Resistance)

  • 김청균
    • 대한기계학회논문집
    • /
    • 제18권11호
    • /
    • pp.2967-2972
    • /
    • 1994
  • The multiple character of the contact interaction and the collective behavior of elementary microcontacts play a significant role in all the processes occurring in the surface layers, including the failure due to friction and wear. The array of metal spheres compressed between flat plates has been used for simulation of the contact behavior of multiple contact of solids under normal loading. An experimental design has been made providing regular array of the spheres at the same size with different spatial order. Measurement of electrial contact resistance has been made using the equipment providing the adequate accuracy in the range of micro Ohms. The data on electrical contact resistance have been compared with theoretical predictions using the multiple contact model of constriction resistance. The effect of single spots number and array on conductivity of contact has been evaluated.