• 제목/요약/키워드: mechanical characteristics

검색결과 15,741건 처리시간 0.032초

Effect of ultra-fine slag on mechanical and permeability properties of Metakaolin-based sustainable geopolymer concrete

  • Parveen, Parveen;Mehta, Ankur;Saloni, Saloni
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.231-239
    • /
    • 2019
  • The present study deals with the development of metakaolin-based geopolymer concrete (GPC) and thereafter studying the effects of adding ultra-fine slag on its mechanical and permeability characteristics. The mechanical characteristics including compressive, split tensile, flexural strengths and elastic modulus were studied. In addition, permeability characteristics including water absorption, porosity, sorptivity and chloride permeability were studied up to 90 days. The results showed the effective utilization of metakaolin for the development of elevated temperature cured geopolymer concrete having high 3-day compressive strength of 42.6 MPa. The addition of ultra-fine slag up to 15%, as partial replacement of metakaolin resulted in an increase in strength characteristics. Similar improvement in durability properties was also observed with the inclusion of ultra-fine slag up to 15%. Beyond this optimum content of 15%, further increase in ultra-fine slag content affected the mechanical as well as permeability parameters in a negative way. In addition, the relationship between various properties of GPC was also derived.

평면형 3자유도 병렬 메커니즘의 여유 구동 특성 분석 (Analysis of the Redundant Actuation Characteristics of the Planar 3-DOF Parallel Mechanism)

  • 전정인;오현석;우상훈;김성목;김민건;김희국
    • 로봇학회논문지
    • /
    • 제12권2호
    • /
    • pp.194-205
    • /
    • 2017
  • A redundantly actuated planar 3-degree-of-freedom parallel mechanism is analyzed to show its high application potential as a haptic device. Its structure along with the closed form forward position solutions is briefly discussed. Then its geometric and kinematic characteristics via singularity analysis, the kinematic isotropy index, and the input-output force transmission ratio are investigated both for the redundantly actuated cases and for the non-redundantly actuated case. In addition, comparative joint torque simulations of the mechanism with different number of redundant actuations as well as without redundant actuation are conducted to confirm the improved joint torque distribution characteristics. Through these analyses it is shown that the geometric and kinematic characteristics of the redundantly actuated mechanism are superior to the ones of the mechanism without redundant actuation. Thus, it can be concluded that the suggested planar mechanism with redundant actuation has a very high potential for haptic device applications.

DED 공정을 이용한 ATC 부품의 재제조를 위한 열-기계 특성 고찰 (Investigation of Thermo-mechanical Characteristics for Remanufacturing of a ATC Part using a DED Process)

  • 이광규;안동규
    • 소성∙가공
    • /
    • 제33권4호
    • /
    • pp.277-284
    • /
    • 2024
  • Interest in remanufacturing of part has significantly increased to reduce used material and energy together. The directed energy deposition (DED) process has widely applied to remanufacturing of the part. An excessive residual stress takes place in the vicinity of the deposited region by the DED process due to rapid heating and rapid cooling (RHRC) phenomenon. The excessive residual stress decreases the reliability of the remanufactured part. Therefore, thermo-mechanical analysis for the remanufacturing of the part is needed to investigate heat transfer and residual stress characteristics in the vicinity of the deposited region. The thermo-mechanical analysis of a large volume deposition is significantly difficult to perform due to the requirement of a long computation time and a large computer memory. The goal of this paper is to investigate thermo-mechanical characteristics for remanufacturing of the ATC part using a DED process. The methodology of the thermo-mechanical analysis for a large volume deposition is proposed. From the results of analysis, heat transfer and residual stress characteristics during deposition and cooling stages are investigated. In addition, the proper deposition strategy from the viewpoint of the residual stress is discussed.

인산화 전분 ER 유체의 댐퍼 내구 특성 (Durability of Phosphorated Starch Based Electrorheological Fluids in Damper Application)

  • 이철희;장민규;손정우;한영민;최승복
    • Tribology and Lubricants
    • /
    • 제25권5호
    • /
    • pp.285-291
    • /
    • 2009
  • In this work, durability characteristics of electrorheological (ER) fluid for damper application are experimentally investigated. ER fluid is prepared by using phosphorated starch particles and silicone oil. The field-dependent Bingham characteristics and response time for the proposed ER fluids are experimentally obtained. Experimental apparatus of durability test for ER fluid is established with cylindrical ER cylinder for mid-sized passenger vehicle. In order to evaluate the durability characteristics of ER fluid as a function of time, damping force and temperature variations are measured until one million cycles. After durability test, Bingham characteristics and response time of ER fluid are measured and compared to the initial properties. Microscopic pictures of ER fluid are taken to validate the changes of properties. The results indicate that the ER fluid can be commercially utilized in vehicle damper system with its durability performance. Moreover, the understanding of durability characteristics is essential to predict the service life of ER fluid as well as to design its applications.

A study on the Characteristics of In-Cylinder Intake Flow in Spark Ignition Engine Using the PIV

  • Lee Suk-Young;Jeong Ku-Seob;Jeon Chung-Hwan;Chang Young-June
    • Journal of Mechanical Science and Technology
    • /
    • 제19권2호
    • /
    • pp.704-715
    • /
    • 2005
  • In this study, to investigate in-cylinder tumble or swirl intake flow of a gasoline engine, the flow characteristics were examined with opening control valve (OCV) and several swirl control valves (SCV) which intensify intake flow through steady flow experiment, and also turbulent characteristics of in-cylinder flow field were investigated by 2-frame cross-correlation particle image velocimetry (PIV) method. In the investigation of intake turbulent characteristics using PIV method, the different flow characteristics were showed according to OCV or SCV figures. The OCV or SCV installed engine had higher vorticity and turbulent kinetic energy than a baseline engine, especially around the wall and lower part of the cylinder. Above all, SCV B type was superior to the others. About energy dissipation and reynolds shear stress distribution, a baseline engine had larger loss than OCV or SCV installed one because flow impinged on the cylinder wall. It should be concluded, from what has been said above, as swirl component was added to existing tumble flow adequately, it was confirmed that turbulent intensity was enlarged, flow energy was conserved effectively through the experiment. In other words, there is a suggestion that flow characteristics as these affected to in-cylinder combustion positively.

홉킨스바 장치를 이용한 분말금속의 동적 특성에 관한 수치해석적 연구 (A Numerical Study on the Dynamic Characteristics of Power Metal using Split Hopkinson Pressure Bar)

  • 황두순;이승우;홍성인
    • 대한기계학회논문집A
    • /
    • 제24권12호
    • /
    • pp.2972-2979
    • /
    • 2000
  • Dynamic characteristics of powder metal is very important to mechanical structures requiring high strength or endurance for impact loading. But owing to distinctive property of powder metal, that is relative, it has been investigated restrictively compared to static characteristics. The objectives of this study is to investigate dynamic characteristics of powder metal and compare it to a fully density material. To find the characteristics, an explicit finite element method is used for simulation of Split Hopkinson Pressure Bar experiment based on the stress wave propagation theory. We obtained a dynamic stress-strain relationship and dynamic behavior of powder metal, as well as the variation of material properties during dynamic deformation.

Atomization Characteristics and Prediction Accuracy of LISA-DDB Model for Gasoline Direct Injection Spray

  • Park, Sung-Wook;Kim, Hyung-Jun;Lee, Ki-Hyung;Lee, Chang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • 제18권7호
    • /
    • pp.1177-1186
    • /
    • 2004
  • In this paper, the spray atomization characteristics of a gasoline direct-injection injector were investigated experimentally and numerically. To visualize the developing spray process, a laser sheet method with a Nd :YAG laser was utilized. The microscopic atomization characteristics such as the droplet size and velocity distribution were also obtained by using a phase Doppler particle analyzer system at the 5 ㎫ of injection pressure. With the experiments, the calculations of spray atomization were conducted by using the KIVA code with the LISA-DDB breakup model. Based on the agreement with the experimental results, the prediction accuracy of LISA-DDB breakup model was investigated in terms of the spray shapes, spray tip penetration, SMD distribution, and axial mean velocity. The results of this study provides the macroscopic and microscopic characteristics of the spray atomization, and prediction accuracy of the LISA-DDB model.

Air-jet 직기 특성이 감성 교직물의 촉감에 미치는 영향 (Effects of the Air-Jet Loom Characteristics on the Hand Properties of the Sensitive Mixture Fabrics)

  • 김승진
    • 한국염색가공학회지
    • /
    • 제20권6호
    • /
    • pp.63-68
    • /
    • 2008
  • The hand of the sensitive mixture fabrics was analysed and discussed with measured mechanical properties of two kinds of woven fabrics according to the characteristics of air-jet loom. The 16 mechanical properties such as tensile, bending, shear, compression and surface were measured using KES-FB system and their differences of the mechanical properties between domestic and foreign looms were analysed with the deviation according to the position of the specimen. And also these mechanical properties according to the domestic and Japan air-jet looms were analysed and discussed with warp and weft insertion tensions during weaving. This research is aiming to make a data base of fabric mechanical properties and, these analysed data are given to weaver as a basic research data related to the effects of loom characteristics to the sensitive mixture fabrics required from weaving fields.

Characteristics of Self-excited Combustion Oscillation and Combustion Control by Forced Pulsating Mixture Supply

  • Yang, Young-Joon;Fumiteru Akamatsu;Masashi Katsuki;Lee, Chi-Woo
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1820-1831
    • /
    • 2003
  • Characteristics of self-excited combustion oscillation are experimentally studied using confined premixed flames stabilized by a rearward-facing step. A new idea to suppress combustion oscillation was applied to the flames. The characteristics of unsteady combustion were examined, which is driven by forced pulsating mixture supply that can modulate its amplitude and frequency. The self-excited combustion oscillation having weaker flow velocity fluctuation intensity than that of the forced pulsating supply can be suppressed by the method. The effects of the forced pulsation amplitude and frequency on controlling self-excited combustion oscillations were also investigated comparing with the steady mixture supply. The unsteady combustion used in this experiment plays an important role in controlling self-excited combustion oscillations, and it also exhibits desirable performances, from a practical point of view, such as high combustion load and reduced pollutant emissions of nitric oxide.

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제15권3호
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.