• Title/Summary/Keyword: mechanical and thermal properties

Search Result 2,688, Processing Time 0.038 seconds

The Study on the physical Properties of tencel fabrics (텐셀직물의 물리적 특성에 관한 연구)

  • Kwon, Oh Kyung;Kwon, HyunSun;Na, Young-Joo
    • Fashion & Textile Research Journal
    • /
    • v.2 no.2
    • /
    • pp.132-137
    • /
    • 2000
  • This study was carried out to evaluate the distribution of mechanical and thermal properties of 14 sorts of tencel fabrics. Three kinds of cellulosic fabrics such as cotton 100%, cotton/tencel 50/50% and rayon 100% were used to compare with tencel fabrics. Furthermore, for the comparison of thermal properties, these fabrics were repeatedly washed 1, 3, 5, 10, 15 and 20 times respectively. The mechanical properties were measured by the KES-FB system and Thereto Labo II type was employed to measure the thermal properties of warmth retaining and contact warm/cool feeling($q_{max}$). The experimental results were analysed statistically to relate the mechanical and thermal properties. Tencel showed sufficient ability to recover from bending deformation and drapability comparing with other cellulosic fabrics and had a silhouette which goes along with the body.

  • PDF

Evaluation on Mechanical Properties of High Strength Concrete according to the Aggregate Type and after Heating Cooling Conditions (가열 후 냉각조건에 따른 골재 종류별 고강도 콘크리트의 역학적 특성 평가)

  • Yun, Jong-Il;Kim, Gyu-Yong;Nam, Jeong-Soo;Choe, Gyeong-Cheol;Yoon, Min-Ho;Ham, Eun-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.99-100
    • /
    • 2012
  • Aggregate thermal properties and cooling methods are most important to evaluate the residual mechanical properties of concrete. In this study, we evaluate the residual mechanical properties of concrete according to the aggregate type and cooling method. We use the normal weight aggregate and light weight aggregate which have different thermal properties. After heating to the target temperature, we evaluate the mechanical properties according to the slow and fast cooling condition. As a result, normal weight aggregate concrete has higher effectiveness of cooling conditions than light weight aggregate concrete.

  • PDF

Ozonization of SWCNTs on thermal/mechanical properties of basalt fiber-reinforced composites

  • Kim, Seong Hwang;Heo, Young-Jung;Park, Soo-Jin
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.517-527
    • /
    • 2019
  • To move forward in large steps rather than in small increments, the community would benefit from a systematic and comprehensive database of multi-scale composites and measured properties, driven by comprehensive studies with a full range of types of fiber-reinforced polymers. The multi-scale hierarchy is a promising chemical approach that provides superior performance in synergistically integrated microstructured fibers and nanostructured materials in composite applications. Achieving high-efficiency thermal conductivity and mechanical properties with a simple surface treatment on single-walled carbon nanotubes (SWCNTs) is important for multi-scale composites. The main purpose of the project is to introduce ozone-treated SWCNTs between an epoxy matrix and basalt fibers to improve mechanical properties and thermal conductivity by enhancing dispersion and interfacial adhesion. The obvious advantage of this approach is that it is much more effective than the conventional approach at improving the thermal conductivity and mechanical properties of materials under an equivalent load, and shows particularly significant improvement for high loads. Such an effort could accelerate the conversion of multi-scale composites into high performance materials and provide more rational guidance and fundamental understanding towards realizing the theoretical limits of thermal and mechanical properties.

Mechanical and Thermal Properties of Environmentally Benign Silicone Foam Filled with Wollastonite

  • Kim, Yongha;Joeng, Hyeonwoo;Lee, Kyoung Won;Hwang, Sosan;Shim, Sang Eun
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.300-305
    • /
    • 2020
  • In recent times, polymeric foams have been popularly used in various applications. To meet the demand for these applications, polymer foams with excellent mechanical and thermal properties are required. In particular, silicone foam has gained significant attention owing to its superior thermal properties and low density. In this study, the mechanical and thermal properties of silicone foams filled with wollastonite were investigated. A maximum tensile strength of 98.3 kPa was obtained by adding 15 phr of wollastonite. The specific gravity did not exhibit a marked difference up to 10 phr, but it increased substantially above 15 phr wollastonite. Thermogravimetric analysis indicated that adding wollastonite to the silicone foam increased both the amount of residue and the thermal decomposition temperature. The morphologies of the silicone foams filled with wollastonite were observed by scanning electron microscopy.

Effects of E-beam treatment on the interfacial and mechanical properties of henequen/polypropylene composites

  • Cho, Dong-Hwan;Lee, Hyun-Seok;Han, Seong-Ok;Drzal, Lawrence T.
    • Advanced Composite Materials
    • /
    • v.16 no.4
    • /
    • pp.315-334
    • /
    • 2007
  • In the present study, chopped henequen natural fibers without and with surface modification by electron beam (E-beam) treatment were incorporated into a polypropylene matrix. Prior to composite fabrication, a bundle of raw henequen fibers were treated at various E-beam intensities from 10 kGy to 500 kGy. The effect of E-beam intensity on the interfacial, mechanical and thermal properties of randomly oriented henequen/polypropylene composites with the fiber contents of 40 vol% was investigated focusing on the interfacial shear strength, flexural and tensile properties, dynamic mechanical properties, thermal stability, and fracture behavior. Each characteristic of the material strongly depended on the E-beam intensity irradiated, showing an increasing or decreasing effect. The present study demonstrates that henequen fiber surfaces can be modified successfully with an appropriate dosage of electron beam and use of a low E-beam intensity of 10 kGy results in the improvement of the interfacial properties, flexural properties, tensile properties, dynamic mechanical properties and thermal stability of henequen/polypropylene composites.

A study on the heat dissipation characteristic of thermal interface materials with Graphene, Cu and Ag nano powders (Graphene, Cu와 Ag 나노 파우더를 이용한 열전도재의 방열 특성에 관한 연구)

  • Park, Sang-Hyeok;Im, Sung-Hoon;Kim, Hyun-Ji;Noh, Jung-Pil;Huh, Sun-Chul
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.6
    • /
    • pp.767-773
    • /
    • 2019
  • The thermal diffusion performance of the electronic device is a factor for evaluating the stability of the electronic device. Therefore, many of research have been conducted to improve the thermal characteristics of thermal interface materials, which are materials for thermal diffusion of electronic products. In this study, nano thermal grease was prepared by blending graphene, silver and copper nano powders into a thermal grease, a type of thermal interface materials, and the heat transfer rate was measured and compared for the purpose of investigating the improved thermal properties. As a result, the thermal properties were good in the order of graphene, silver and copper, which is thought to be due to the different thermal properties of the nano powder itself.

Effect of Graphite Nanofibers on Poly(methyl methacrylate) Nanocomposites for Bipolar Plates

  • Seo, Min-Kang;Park, Soo-Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.3
    • /
    • pp.671-674
    • /
    • 2009
  • In this work, high-aspect-ratio graphite nanofibers (GNFs) were used to improve the electrical, thermal, and mechanical properties of the poly(methyl methacrylate) (PMMA) polymer, as well as those of PMMA composites suitable for use in bipolar plates. In the result, an electrical percolation threshold for the composites was formed between 1 and 2 wt% GNF content. This threshold was found to be influenced strongly by the three separate stages of the meltblending process. The composites exhibited higher thermal and mechanical properties and lower thermal shrinkage compared with the neat PMMA. Thus, GNFs were demonstrated to have positive impacts on the thermo-mechanical properties of PMMA composites and showed, thereby, reasonable potential for use in composites employed in the fabrication of bipolar plates.

Effects of SiO2 and 3Y-TZP on Mechanical Properties of Zircon (SiO2와 3Y-TZP 첨가가 지르콘의 기계적 물성에 미치는 영향)

  • Jang, Ho Su;Cho, Bum Rae
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.182-186
    • /
    • 2016
  • Zircon, having excellent thermal, chemical, and mechanical properties, is utilized in refractory materials, electronic materials, chemical machines, structural materials, etc. However, zircon generally shows thermal dissociation to zirconia($ZrO_2$) and silica($SiO_2$) around the sintering temperature of $1540^{\circ}C$, and when zircon particles are small and impurities are present, thermal dissociation is known to occur at around $1100^{\circ}C$. This reduces the mechanical properties of $ZrSiO_4$. In this research, the effect of adding $SiO_2$ and 3Y-TZP to $ZrSiO_4$ has been studied in order to suppress dissociation and improve the mechanical properties. Addition of $SiO_2$ suppressed the dissociation of $ZrSiO_4$ at lower temperatures. It also enabled optimum packing between the particles, resulting in a dense microstructure and good mechanical properties. When 3Y-TZP was added, recombination with the dissociated $SiO_2$ resulted in good mechanical properties by suppressing the generation of pores and the densification of the microstructure.

Characterization of Artificial Graphite Electrodes

  • Park, Sei-Min;Han, Sang-Moo;Oh, Seh-Min
    • Carbon letters
    • /
    • v.1 no.2
    • /
    • pp.76-81
    • /
    • 2000
  • Physical properties of artificial graphite electrodes were evaluated along three different directions; circumferential (X), radial (Y), and axial (Z) directions. Four kinds of commercial electrode products were used in this study for the evaluation; pole (AP) and nipple (AN) of manufacturer A, pole (BP) and nipple (BN) of manufacturer B. The mechanical, electrical, and thermal properties in X and Y directions were very similar to each other. In Z direction, however, the mechanical properties, including flexural strength and compressive strength, were higher, and electric resistance and thermal expansion were much lower than those in the other directions. The microstructures observed by optical microscope and scanning electron microscope revealed that the differences in properties by the measuring direction were caused by the preferential alignment of needle cokes along the Z direction. When comparing the properties of the electrode samples in the same direction, the mechanical properties mainly depended on the bulk density or porosity of the samples as well as preferential alignment of needle cokes.

  • PDF

Properties of impact modifier reinforced PPS/MWCNT Nanocomposite (충격보강제가 보강된 PPS (polyphenylene sulfide)/MWCNT (multi-walled carbon nanotube) 나노복합체의 물성연구)

  • Park, Ji Soo;Kim, Seung Beom;Nam, Byeong Uk
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.2
    • /
    • pp.75-80
    • /
    • 2012
  • Polymer composites which have electrical properties have been studied in various industries. The Multi-walled carbon nanotube (MWCNT) are thought to be reinforcements for polymers because of their high aspect ratio and specially mechanical, thermal and electrical properties. We introduced MWCNT and impact modifier in order to improve thermal and mechanical properties of Polyphenylene sulfide (PPS) and give electric characteristic to PPS. The thermal properties were investigated by Differential scanning calorimeter (DSC) and Thermogravimetric analysis (TGA). The morphology, mechanical properties and electrical characteristic were performed by Field emission scanning electron microscopy (FE-SEM), Izod impact tester and surface resistance meter. As a result, we could find that the PPS/MWCNT composites have high conductivity and good mechanical properties than neat PPS resin.