• Title/Summary/Keyword: mechanical and physical properties

Search Result 1,925, Processing Time 0.026 seconds

Recent Progress in Membrane based Colorimetric Sensor for Metal Ion Detection (색 변화를 활용한 중금속 이온 검출에 특화된 멤브레인 기반 센서의 최근 연구 개발 동향)

  • Bhang, Saeyun;Patel, Rajkumar
    • Membrane Journal
    • /
    • v.31 no.2
    • /
    • pp.87-100
    • /
    • 2021
  • With a striking increase in the level of contamination and subsequent degradations in the environment, detection and monitoring of contaminants in various sites has become a crucial mission in current society. In this review, we have summarized the current research areas in membrane-based colorimetric sensors for trace detection of various molecules. The researches covered in this summary utilize membranes composed of cellulose fibers as sensing platforms and metal nanoparticles or fluorophores as optical reagents. Displaying decent or excellent sensitivity, most of the developed sensors achieve a significant selectivity in the presence of interfering ions. The physical and chemical properties of cellulose membrane platforms can be customized by changing the synthesis method or type of optical reagent used, allowing a wide range of applications possible. Membrane-based sensors are also portable and have great mechanical properties, which enable on-site detection of contaminants. With such superior qualities, membrane-based sensors examined in the researches were used for versatile purposes including quantification of heavy metals in drinking water, trace detection of toxic antibiotics and heavy metals in environmental water samples. Some of the sensors exhibited additional features like antimicrobial ability and recyclability. Lastly, while most of the sensors aimed for a detection enabled by naked eyes through rapid colour change, many of them investigated further detection methods like fluorescence, UV-vis spectroscopy, and RGB colour intensity.

A Study on the Characteristics of IR/CR Rubber Blends by Surface Treatment with Chlorine (염소의 표면처리에 따른 IR 및 CR Blend의 특성 연구)

  • Park, Ji-Hye;Lee, Chang-Seop;Park, Hyun-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.6
    • /
    • pp.749-754
    • /
    • 2010
  • In this study, rubber vulcanization property, change in physical property, morphology and chemical characteristics of blended rubber depending on various IR/CR ratio were investigated for the purpose of the improvement of material property and durability. The effect of surface treatment by chlorine on the friction coefficient was also studied with various conditions of surface treatment. In terms of vulcanization property, as the amount of CR content increased, the speed of cure was decreased, while the density of crosslinking stayed constant. It means hardness and modulus were increased as the CR content increased. It is related to change in cure property and mechanical strength was improved by the effect of crystallization reaction. In the aging property, as the CR content increases, the changed amount of basic properties were decreased, which acts as a reducing factor in change of aged property by complementing weak point in mechanical property. It was found that the degree of property change for surface treated samples were reduced. According to the microscopic result, the degree of surface dispersion on rubber blends was increased by increasing CR content. Rubber surface showed uniform direction in pattern with increased smoothness and luster by treatment with chlorine. The degree of rubber reforming was measured by the remaining amount of chlorine and the friction coefficient was dependent on the amount of chlorine combined with rubber. In the initial stage of surface treatment, from 10 to 40 phr, the friction coefficient of specimen was rapidly reduced. However, as the concentration of chlorine solution increased, the change in friction coefficient was decreased.

Preparation and Physical Properties of Poly(ethylene-co-ethyl acrylate)/Carbon Nanotube Nanocomposites (폴리에틸렌에틸아크릴레이트/카본나노튜브 나노복합체의 제조 및 물성)

  • Kook, Jeong Ho;Jeong, Kwang-Un;Yang, Jong Seok;Park, Dae Hee;Go, Jin Hwan;Nah, Changwoon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.161-167
    • /
    • 2008
  • Multi-walled carbon nanotubes (MWCNT)-reinforced poly(ethylene-co-ethyl acrylate) (EEA) nanocomposites were prepared by both melt and solution mixing methods. The mechanical, thermal, and electrical properties were investigated as a function of type and loading of CNT. The tensile strength and modulus increased, while elongation at break decreased with increasing MWCNT content. The hollow-type MWCNT showed an improved tensile strength and elongation at break compared with a conventional MWCNT. The thermal degradation temperature was increased by around $40^{\circ}C$ with increasing the amount of MWCNT. The melt-mixed composites showed the highest volume resistivity. In the case of solution-mixed composites, the conventional MWCNT was estimated to show much lower volume resistivity than that of hollow MWCNT. The number and length of extruded CNT onto the fractured surface increased by both increasing the content of CNT and employing the tensile strain to the sample. The melt-mixed specimens showed much smaller number and shorter length of extruded CNT.

A Study on Properties of Retarder via Tabletting Method (정제화 방법을 이용한 응결 지연제의 특성에 관한 연구)

  • Ryou, Jae-Suk;Yang, Neung-Won;Lee, Yong-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.2
    • /
    • pp.201-207
    • /
    • 2013
  • When hot weather concrete is utilized, the cooling methods of cooling pipe, liquid nitrogen, ice, etc., are used to prevent the poor consistency and cold joint due to high temperature. These methods, however, spike the production cost and energy consumption, and make quality control difficult. Among these methods is one that involves the use of a retarder. Although economical, retarder is caused difficulty of retarded hardening and setting time control due to inaccurate weighing and poor working condition. Therefore, how to make a tablet for hot weather concrete, as with the existing pharmacy and foods, is discussed in this study, including the following items: mortar setting time, flow test by elapsed time, physical and mechanical properties of concrete. As a result, gluconic acid is superior to lignosulfonic acid and the possibility of using them for such purpose without quality degradation was confirmed in this study, when retarder is tabletting.

Fluoro-illite/polypropylene Composite Fiber Formation and Their Thermal and Mechanical Properties (불소화 일라이트/폴리프로필렌 복합섬유 형성 및 열 및 기계적 특성)

  • Jeong, Euigyung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.5
    • /
    • pp.467-472
    • /
    • 2011
  • This study investigated illite/polypropylene (PP) composite filament formation via melt-spinning and evaluated their physical properties to prepare functional fibers using natural materials. When composite filaments were formed, the composite filaments exhibited smaller fiber diameters compared to that of neat PP filament because of the lubricant effect of illite induced by its layered structure. Moreover, fluorination effect increased interfacial affinity and dispersion in the polymer, resulting in smaller diameter of fluorinated illite/PP composite filament, which was 2/3 of the neat PP filament diameter. Addition of raw and fluorinated illite improved thermal stability of illite/PP composite filament. Raw illite/PP composite filament cannot be used for a practical application, because it broke during drawing process, whereas the fluorinated illite/PP composite filament can be used for a practical application, because it exhibited similar tensile strength of the neat PP filament and 50% increased modulus. Even with improved illite/PP interfacial affinity and illite dispersion in the polymer, illite/PP composite filament formed microcomposite, because non-expandable illite had strongly bound layers, resulting in only a little illite exfoliation and PP intercalation into illite.

A Fundamental Study on Laboratory Experiments in Rock Mechanics for Characterizing K-COIN Test Site (K-COIN 시험부지 특성화를 위한 암석역학 실내실험 기초 연구)

  • Seungbeom Choi;Taehyun Kim;Saeha Kwon;Jin-Seop Kim
    • Tunnel and Underground Space
    • /
    • v.33 no.3
    • /
    • pp.109-125
    • /
    • 2023
  • Disposal repository for high-level radioactive waste secures its safety by means of engineered and natural barriers. The performance of these barriers should be tested and verified through various aspects in terms of short and/or long-term. KAERI has been conducting various in-situ demonstrations in KURT (KAERI Underground Research Tunnel). After completing previous experiment, a conceptual design of an improved in-situ experiment, i.e. K-COIN (KURT experiment of THMC COupled and INteraction), was established and detailed planning for the experiment is underway. Preliminary characterizations were conducted in KURT for siting a K-COIN test site. 15 boreholes with a depth of about 20 m were drilled in three research galleries in KURT and intact rock specimens were prepared for laboratory tests. Using the specimens, physical measurements, uniaxial compression, indirect tension, and triaxial compression tests were conducted. As a result, specific gravity, porosity, elastic wave velocities, uniaxial compressive strength, Young's modulus, Poisson's ratio, Brazilian tensile strength, cohesion, and internal friction angle were estimated. Statistical analyses revealed that there did not exist meaningful differences in intact rock properties according to the drilled sites and the depth. Judging from the uniaxial compressive strength, which is one of the most important properties, all the specimens were classified as very strong rock so that mechanical safety was secured in all the regions.

Physical Properties of Photosynthetic Cyanobacteria Applied Porous Concrete by CO2 Sequestration (광합성 남세균을 도포한 투수 콘크리트의 이산화탄소 고정에 의한 물성 변화)

  • Indong Jang;Namkon Lee;Jung-Jun Park;Jong-Won Kwark;Hoon Moon
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.416-424
    • /
    • 2023
  • Concrete emits a large amount of carbon dioxide throughout its life cycle, and due to the societal demand for carbon dioxide reduction, research on storing carbon dioxide in concrete in the form of minerals is ongoing. In this study, cyanobacteria, which absorb carbon dioxide through photosynthesis and fix it as calcium carbonate, were applied to a porous concrete substrate, and the changes in the properties of the concrete substrate due to their special environmental curing condition were analyzed. The results showed that the calcium carbonate precipitation by the microorganisms was concentrated in the light-exposed surface area, and most of the precipitation occurred in the cement paste part, not in the aggregate. This microbially induced calcium carbonate precipitation enhanced the mechanical performance of the paste and improved the overall compressive strength as the curing age progressed. In addition, the increase in microbial biofilm and calcium carbonate improved the pore structure, which influenced the reduction in water permeability.

Effect of heat treatment of core fabricated by Ni-Cr alloy on marginal and internal fit (열처리가 Ni-Cr 합금으로 제작된 하부구조물의 변연 및 내면 간격에 미치는 영향)

  • Kim, Jae-Hong;Kim, Ki-Baek;Jung, Jae-Kwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.9
    • /
    • pp.244-250
    • /
    • 2017
  • The most important aspect determining the completeness of aprosthesis is itsmarginal and internal fit. Alloysare processed using a softening/hardening heat treatment methodin order to improve their mechanical, physical properties and polishing properties. To examinehow the heat treatment method affects the marginal and internal fit of the Ni-Cr alloy core,thirty dental stone models of the abutment of the mandibular left molar were manufactured.The Ni-Cr alloy coreswere manufactured by the dipping method for the experiment and dividedinto three groups; A for no heat treatment, B for softening heat treatment and C for hardening heat treatment. The marginal and internal fitsof all of the groups were measured by the silicone replica technique. A statistical analysis was performed using one-way ANOVA(${\alpha}=0.05$) in order to examine whether there is a significant difference in the average values of the marginal and internal fits among the three groups and it was found that themarginal fits (1, 6) were significantly different (p<0.05), but the internal fits (2, 3, 4, 5) were not significantly different (p>0.05). These results show that Ni-Cr alloys should not be processed bythe heat treatmentmethod.However, they need to be confirmed in further clinical application studies.

Optimization of White Pan Bread Preparation via Addition of Purple Barley Flour and Olive Oil by Response Surface Methodology (자맥가루와 올리브유 첨가 식빵의 제조조건 최적화)

  • Kim, Jin Kon;Kim, Young-Ho;Oh, Jong Chul;Yu, Hyeon Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.12
    • /
    • pp.1813-1822
    • /
    • 2012
  • The purpose of this study was to determine the optimal mixing conditions of two different amounts of purple barley flour ($X_1$), and olive oil ($X_2$) in baking white pan bread. The experiment was designed according to the central composite design of response surface methodology, which showed 10 experimental points including 2 replicates. The more purple barley flour added, the more weight, yellowness (b-value), hardness, gumminess, and chewiness increased; but the more volume, specific loaf volume, lightness (L-value), and springiness decreased. The greater the amount of olive oil added, the more hardness, cohesiveness, gumminess, and chewiness increased; but the more yellowness (b-value) and springiness decreased. The physical and mechanical properties were affected more by the amount of purple barley flour than by the amount of olive oil. Sensory properties except flavor were more affected by the amount of purple barley flour than by the amount of olive oil.

Fabrication and characterization of porous hydroxyapatite scaffolds with PMMA addition using tertiary-butyl alcohol based freeze casting method (삼차부틸알코올 기반 동결주조 공정을 이용한 PMMA 첨가 다공질 수산화아파타이트 지지체의 제조 및 특성 평가)

  • Kim, Tae-Rim;Yoon, Seog-Young;Heo, Jin-Young;Lee, Chi-Seung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.235-242
    • /
    • 2017
  • In order to prepare porous scaffolds capable of pore control, PMMA powder serving as a pore-forming agent was added to HA powder to synthesize a slurry containing TBA as a solvent. And then, porous HA scaffolds where pillarshaped pore channels interconnected with each other were fabricated by freeze-casting and sintering. The crystal structure of the HA scaffolds according to the addition amount of PMMA powder was measured by XRD and the surface and inner cross section of the scaffolds were analyzed through SEM. It was found that removal of PMMA during sintering affects the internal structure of the scaffolds and the crystallinity of the HA powder. Furthermore, through evaluating the physical and mechanical properties of the scaffolds, it was confirmed that the porosity, pore size and compressive strength can be controlled by controlling the addition amount of the pore-forming agent. It was also found that the HA scaffolds produced in this study were similar in structure and properties to the natural cancellous bone. This suggests that porous HA scaffolds with PMMA can be used as an alternative to autogenous bone for tissue engineering as an artificial bone scaffold.