• Title/Summary/Keyword: mechanical and physical properties

Search Result 1,922, Processing Time 0.027 seconds

Stress characteristics of multilayer polysilicon for the fabrication of micro resonators (마이크로 공진 구조체 제작을 위한 다층 폴리실리콘의 스트레스 특성)

  • Choi, C.A.;Lee, C.S.;Jang, W.I.;Hong, Y.S.;Lee, J.H.;Sohn, B.K.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.53-62
    • /
    • 1999
  • Micro polysilicon actuators, which are widely used in the field of MEMS (Microelectromechanical System) technology, were fabricated using polysilicon thin layers. Polysilicon deposition were carried out to have symmetrical layer structures with a LPCVD (Low Pressure Chemical Vapor Deposition) system, and we have measured physical characteristics by micro test patterns, such as bridges and cantilevers to verify minimal mechanical stress and stress gradient in the polysilicon layers according to the methods of mutilayer deposition, doping, and thermal treatment, also, analyzed the properties of each specimen, which have a different process condition, by XRD, and SIMS etc.. Finally, the fabricated planar polysilicon resonator, symmetrically stacked to $6.5{\mu}m$ thickness, showed Q of 1270 and oscillation ampitude of $5{\mu}m$ under DC 15V, AC 0.05V, and 1000 mtorr pressure. The developed micro polysilicon resonator can be utilized to micro gyroscope and accelerometer sensor.

  • PDF

Experimental Study on Physical and Mechanical Properties of Concrete with fine Waste Glass (잔골재로 폐유리를 혼입한 콘크리트의 물리.역학적 특성에 관한 실험적 연구)

  • 박승범;조청휘;김정환
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.2
    • /
    • pp.184-191
    • /
    • 2001
  • Recently, as industrialization is rapidly growing and the standard of life is rising, the quantities of waste glasses have been hastily increased and most of them are not recycled but abandoned. It cause some problems such as the waste of natural resources and environmental pollution. Therefore, this study was conducted basic experimental research to analyze the possibilities of recycling of waste glasses(crushed waste glasses outbreaking from our country such as amber, emerald-green, flint and mixed) as fine aggregates for concrete. Test results of fresh concrete, slump and compacting factors decrease because grain shape is angular and air content increase due to involving small size particles so much in waste glasses. Also compressive, tensile and flexural strengths decrease with increase of the content of waste glasses. In conclusion, the content of waste glasses below 30% is reasonable and usage of pertinent admixture is necessary to obtain workability and air content.

Quality Characteristics of Muffins Prepared with Flowering Cherry (Prunus serrulata L. var. spontanea Max. wils.) Fruit Powder (버찌(Fruit of Prunus serrulata L. var. spontanea Max. wils.) 분말 첨가 머핀의 품질특성)

  • Kim, Kyoung-Hee;Lee, Sang-Young;Yook, Hong-Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.6
    • /
    • pp.750-756
    • /
    • 2009
  • Cherry powder (obtained from ground fruit of Prunus serrulata L. var. spontanea Max. wils.), which is a natural functional material, was used in muffin manufacturing at different concentrations from 0, 3, 5, 7, and 10% (w/w). Muffin was evaluated for their sensory property and physical quality. The antioxidative activity measured by DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity of muffin increased as the concentrations of cherry powder increased. As the concentration of cherry powder increased, the mechanical characteristics of the muffin, such as hardness increased, but gumminess and chewiness decreased. Lightness (L) and yellowness (b) of muffin decreased as the concentration of cherry powder increased, whereas the redness (a) increased. The muffins containing 3, 5, 7, and 10% cherry powder had acceptable sensory properties, such as color, flavor, taste, softness, moisture, and overall acceptability. The results exhibited that adding the cherry powder into the muffin increased antioxidant activity. The highest quality improvement was obtained by incorporating 5% (w/w) of cherry powder into the muffin formula.

A Study on the Predictive Maintenance of 5 Axis CNC Machine Tools for Cutting of Large Aircraft Parts (대형 항공부품용 5축 가공기에서의 예측정비에 관한 연구)

  • Park, Chulsoon;Bae, Sungmoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.4
    • /
    • pp.161-167
    • /
    • 2020
  • In the process of cutting large aircraft parts, the tool may be abnormally worn or damaged due to various factors such as mechanical vibration, disturbances such as chips, and physical properties of the workpiece, which may result in deterioration of the surface quality of the workpiece. Because workpieces used for large aircrafts parts are expensive and require strict processing quality, a maintenance plan is required to minimize the deterioration of the workpiece quality that can be caused by unexpected abnormalities of the tool and take maintenance measures at an earlier stage that does not adversely affect the machining. In this paper, we propose a method to indirectly monitor the tool condition that can affect the machining quality of large aircraft parts through real-time monitoring of the current signal applied to the spindle motor during machining by comparing whether the monitored current shows an abnormal pattern during actual machining by using this as a reference pattern. First, 30 types of tools are used for machining large aircraft parts, and three tools with relatively frequent breakages among these tools were selected as monitoring targets by reflecting the opinions of processing experts in the field. Second, when creating the CNC machining program, the M code, which is a CNC auxiliary function, is inserted at the starting and ending positions of the tool to be monitored using the editing tool, so that monitoring start and end times can be notified. Third, the monitoring program was run with the M code signal notified from the CNC controller by using the DAQ (Data Acquisition) device, and the machine learning algorithms for detecting abnormality of the current signal received in real time could be used to determine whether there was an abnormality. Fourth, through the implementation of the prototype system, the feasibility of the method proposed in this paper was shown and verified through an actual example.

Quality Characteristics of $Sulgidduck$ Added with Purple Sweet Potato (자색고구마를 첨가한 설기떡의 품질 특성)

  • Park, Young-Mi;Kim, Myeong-Hee;Yoon, Hye-Hyun
    • Culinary science and hospitality research
    • /
    • v.18 no.1
    • /
    • pp.54-64
    • /
    • 2012
  • The purpose of this study is to develop $Sulgidduk$ which meets the consumers' taste by using cooked purple sweet potato. The samples of $Sulgidduk$ were prepared with different ratios of cooked purple sweet potato(0, 10, 20, 30, 40%) and analyzed for moisture content, Hunter's color value and texture characteristics and sensory evaluation. The moisture contents of the samples ranged 40.83% to 44.91% The L-value and b-value decreased, while a-value increased, with increasing amounts of cooked purple sweet potato. In the mechanical evaluation of physical properties, hardness, adhesiveness, springiness, gumminess and cohesiveness showed no significant difference with the increasing amount of cooked purple sweet potato. However, chewiness decreased significantly with the increasing amount of cooked purple sweet potato. Based on the quantitative descriptive sensory evaluations on $Sulgidduk$ samples, purple color, sweet potato flavor and taste, sweetness, and moistness significantly increased, while hardness decreased significantly with the increasing amount of cooked purple sweet potato. $Sulgidduk$ added 40% cooked purple sweet potato showed the highest in overall acceptability and the slowest hardening in the textural changes during storage.

  • PDF

The Washing Characteristics of Lycium chinense Miller with Different Washing Methods (구기자 세척기 개발을 위한 구기자의 세척특성)

  • Lee, Seung-Ki;Han, Jae-Woong;Jeon, Myung-Jin;Park, Won-Jong;Baek, Seung-Woo;Kim, Wong
    • Journal of Biosystems Engineering
    • /
    • v.35 no.4
    • /
    • pp.244-249
    • /
    • 2010
  • This study was conducted to define the optimal Lycium chinense miller washing method for developing the Lycium chinense cleaner and we analyzed the Lycium chinense miller washing characteristics for removing pesticides and microorganism according to washing methods; habitual washing method, air bubble washing method and nozzle spray washing method. The results were summarized as follows; 1. In case of measuring physical properties according to the varieties, maximum yield strength of Hokwang was 2.562 kgf, minimum yield strength of Hokwang was 0.269 kgf and average yield strength was about 1 kgf. 2. In case of measuring change of bacteria according to washing methods, the number of bacteria of non-washing method was more than the number of bacteria of habitual washing method or mechanical washing method and the number of nozzle spray washing method was least. 3. Ahjoksiseuteurobin of 0.218 ppm was detected in the untreated sample, 0.051 ppm was detected in the habitual washing method, 0.047 ppm was detected in the air bubble washing method and 0.034 ppm was detected in nozzle spray washing method. Every amount detected were less than 2 ppm that is reference value and the detected amount was least in case of nozzle spay cleaning method. Cypermethrin of 0.772 ppm was detected in the non-cleaned sample, 0.089ppm was detected in habitual washing method, 0.26 ppm was detected in the air bubble washing method and 0.292 ppm was detected in the nozzle spray washing method. Every detected amount of Cypermethrin were less than 5 ppm that is reference value and the detected amount was least in case of habitual washing method.

Installation and Safety Evaluation of Tracking-type Floating PV Generation Structure (추적식 수상 태양광발전 구조물의 시공 및 안전성 평가)

  • Jang, Min-Jun;Kim, Sun-Hee;Lee, Young-Geun;Woo, Sang-Byock;Yoon, Soon-Jong
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.5 no.1
    • /
    • pp.1-8
    • /
    • 2014
  • Pultruded glass fiber reinforced polymeric plastic (PFRP) and FRP member manufactured by sheet molding compound (SMC) have superior mechanical and physical properties compared with those of conventional structural materials. Since FRP has an excellent corrosion-resistance and high specific strength and stiffness, the FRP material may be highly appreciated for the development of floating-type photovoltaic (PV) power generation system. In this paper, advanced floating PV generation system made of PFRP and SMC is designed. In the design, it includes tracking solar altitude by tilting photovoltaic arrays and tracking solar azimuth by spinning structures. Moreover, the results of the finite element analysis (FEA) are presented to confirm stability of entire structure under the external loads. Additionally, installation procedure and mooring systems in the Hap-Cheon Dam are discussed and the measurement of strain under the actual circumstances is conducted for assuring stability of actually installed structures. Finally, by comparison with allowable stress, appropriate safety of structure is confirmed to operate the system.

Reaction-Bonded Al2O3 Ceramics Using Oxidation of Al Alloy Powder

  • Lee, Hyun-Kwuon
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.236-242
    • /
    • 2014
  • Fabrication of reaction-bonded $Al_2O_3$ (RBAO) ceramics using Al-Zn-Mg alloy powder was studied in order to improve traditional RBAO ceramic processing using Al powder. The influence on reaction-bonding and microstructure, as well as on physical and mechanical properties, of the particulate characteristics of the $Al_2O_3$-Al alloy powder mixtures after milling, was revealed. Variation of the particulate characteristics of this $Al_2O_3$-Al alloy powder mixture with milling time was reported previously. To start, the $Al_2O_3$-Al alloy powder mixture was milled, reaction-bonded, post-sintered, and characterized. During reaction-bonding of the $Al_2O_3$-Al alloy powder mixture compacts, oxidation of the Al alloy took place in two stages, that is, there was solid- and liquid-state oxidation of the Al alloy. The solid-state oxidation exhibited strong dependence on the density of surface defects on the Al-alloy particles formed during milling. Higher milling efficiency resulted in less participation of the Al alloy in reaction-bonding. This was because of its consumption by chemical reactions during milling, and subsequent powder handling, and could be rather harmful in the case of over-milling. In contrast to very little dependence of oxidation of the Al alloy on its particle size after milling, the relative density, microstructure, and flexural strength were strongly dependent on particle size after milling (i.e., on milling efficiency). The relative density and 4-point flexural strength of the RBAO ceramics in this study were ~98% and ~365 MPa, respectively, after post-sintering at $1,600^{\circ}C$.

Comparison of SBR/BR Blend Compound and ESBR Copolymer Having Same Butadiene Contents

  • Hwang, Kiwon;Lee, Jongyeop;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.54 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • The rapid development of the automobile industry is an important factor that led to the dramatic development of synthetic rubber. The tread part of tire that comes in direct contact with the road surface is related to the service life of the tire. Rubber compounds used in tire treads are often blended with SBR (styrene-butadiene rubber) and BR (butadiene rubber) to satisfy physical property requirements. However, when two or more kinds of rubber are blended, phase separation and silica dispersion problems may occur due to non-uniform mixing of the rubber. Therefore, in this study, we synthesized an SBR copolymer with the same composition as that of a typical SBR/BR blend compound by controlling butadiene content during ESBR (emulsion styrene-butadiene rubber) synthesis. Subsequently, silica filled compounds were manufactured using the synthesized ESBR, and their mechanical properties, dynamic viscoelasticity, and crosslinking density were compared with those of the SBR/BR blended compound. When the content of butadiene was increased in the silica filled compound, the cure rate accelerated due to an increased number of allylic positions, which typically exhibit higher reactivity. However, the T-2 compound with increased butadiene content by synthesis less likely to show an increase in crosslink density due to poor silica dispersion. In addition, the T-3 compound containing high cis BR content showed high crosslink density due to its monosulfide crosslinking structure. Because of the phase separation, SBR/BR blend compounds were easily broken and showed similar $M_{100%}$ and $M_{300%}$ values as those of other compounds despite their high crosslink density. However, the developed blend showed excellent abrasion resistance due to the high cis-1,4 butadiene content and low rolling resistance due to the high crosslink density.

Application of Concentrated FRP Bars to Enhance the Capacity of Two-Way Slabs (2방향 슬래브의 성능 향상을 위한 집중 배근된 FRP 바의 적용)

  • Lee, Joo-Ha;Yang, Jun-Mo;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.6
    • /
    • pp.727-734
    • /
    • 2007
  • The influence of the differences in the physical and mechanical properties between fiber-reinforced polymer (FRP) and conventional steel, concentrated reinforcement in the immediate column region, as well as using steel fiber-reinforced concrete (SFRC) in the slab near the column faces, on the punching behavior of two-way slabs were investigated. The punching shear capacity, stiffness, ductility, strain distribution, and crack control were investigated. Concentrating of the slab reinforcement and the use of SFRC in the slab enhanced the punching behavior of the slabs reinforced with glass fiber-reinforced polymer (GFRP) bars. In addition the test results of the slabs with concentrated reinforcement were compared with various code equations and the predictions proposed in the literature specifically for FRP-reinforced slabs. An appropriate method for determining the reinforcement ratio of slabs with a banded distribution was also investigated to allow predictions to properly reflect the benefit of the slab reinforcement concentration.