• Title/Summary/Keyword: mechanical and physical properties

Search Result 1,922, Processing Time 0.036 seconds

A Study on the Phrsical and Mechanical Properties of Concrete with Ferro Copper Slag (동슬래그를 잔골재로 사용한 콘크리트의 물리.역학적 특성에 관한 연구)

  • Lee, Mun-Hwan;Lee, Sea-Hyun;Song, Tae-Hyeob
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.361-368
    • /
    • 2003
  • As the supply of aggregate needed in the construction site becomes difficult due to preservation of environment and exhaust of aggregate resource, a research for replacement aggregate in shortage is being actively progressed and a copper slag is also a kind of replacing aggregate. To use copper slag as fine aggregate of concrete, many studies are already conducted in each of the advanced countries and in the state of applying these at the site. In the year of 2000 a Korea industrial standard of Copper slag aggregate for concrete was established in our country so that this can be applied in the construction site. This study is to find out whether copper slag is equipped with the physical and chemical requirements for the use in concrete aggregate, and to analyze the dynamic properties of copper slag concrete that replaces 25, 50, 75, 100% of fine aggregate. Copper slag study not only satisfies the using condition of fine aggregate, but also reveals high level of physical property compared to ordinary concrete up to 50% of sand replacement rate. In the future after confirming the durability of concrete using copper slag, it is judged to be advantageous for the preservation of environment to use this as a replacement material for natural aggregate.

Anatomical and Physical Properties of Pitch Pine (Pinus rigida Miller) - The Characteristics of Stem, Branch, Root and Topwood - (리기다소나무(Pinus rigida Miller)의 목재해부학적(木材解剖學的) 및 물리학적성질(物理學的性質)에 관(關)한 연구(硏究) - 간(幹), 지(枝), 근(根), 초두목(梢頭木)의 특성(特性)을 중심(中心)으로 -)

  • Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.33-62
    • /
    • 1972
  • Pitch pine (Pinus rigida Miller) in Korea has become one of the major silvicultural species for many years since it was introduced from the United States of America in 1907. To attain the more rational wood utilization basical researches on wood properties are primarily needed, since large scale of timber production from Pitch Pine trees has now been accomplishing in the forested areast hroughout the country. Under the circumustances, this experiment was carried out to study the wood anatomical, physical and mechanical properties of Pitch Pine grown in the country. Materials used in this study had been prepared by cutting the selected pitch pine trees from the Seoul National University Forests located in Suwon. To obtain and compare the anatomical and physical properties of the different parts of tree such as stem, branch, top and rootwood, this study had been divided into two categories (anatomical and physical). For the anatomical study macroscopical and microscopical features such as annual ring, intercellular cannal, ray, tracheid, ray trachid, ray parenchyma cell and pit etc. were observed and measured by the different parts (stem, branch, root and topwood) of tree. For the physical and mechanical properties the moisture content of geen wood, wood specific gravity, shrinkage, compression parallel to the grain, tension parallel and perpendicular to the grain, radial and tangential shear, bending, cleavage and hardness wree tested. According to the results this study may be concluded as follows: 1. The most important comparable features in general properties of wood among the different parts of tree were distinctness and width of annual ring, transition from spring to summerwood, wood color, odor and grain etc. In microscopical features the sizes of structural elements of wood were comparable features among the parts of tree. Among their features, length, width and thickness of tracheids, resin ducts and ray structures were most important. 2. In microscopical features among the different parts of tree stem and topwood were shown simillar reults in tissues. However in rootwood compared with other parts on the tangential surface distinctly larger ray structures were observed and measured. The maximum size of unseriate ray was attained to 27 cell ($550{\mu}$) height in length and 35 microns in width. Fusiform rays were formed occasionally the connected ray which contain one or several horizontal cannals. Branchwood was shown the same features like stemwood but the measured values were very low in comparing with other parts of tree. 3. Trachid length measured among the different parts of tree were shown largest in stem and shortest in branchwood. In comparing the tracheid length among the parts the differences were not shown only between stem and rootwood, but shown between all other parts of tree. Trachid diameters were shown widest in rootwood and narrowest in branchwood, and the differences among the different parts were not realized. Wall thickness were shown largest value in rootwood and smallest in branchwood, and the differences were shown between root and top or branchwood, and between stem and branch or top wood, but not shown between other parts of tree. 4. Moisture contents of green wood were shown highest in topwood and lowest in heartwood of stem. The differences among the different parts were recognized between top or heartwood and other parts of tree, but not between root and branchwood or root and sapwood. 5. Wood specific gravities were shown highest in stem and next order root and branchwood, but lowest in topwood. The differences were shown clearly between stemwood and other parts of tree, but not root and branchwood. However the significant difference is realized as most lowest value in topwood. 6. In compression strength parallel to the grain compared among the different parts of tree at the 14 percent of moisture content, highest strength was appeared in stem, next order branch and rootwood, but lowest in topwood. 7. In bending strength compared among the different parts of tree at the 14 percent of moisture content clearly highest strength was shown in branchwood, next order stem and root, but lowest in topwood. Though the branchwood has lower specific gravity than stemwood it was shown clearly high bending strength.

  • PDF

Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits

  • Wei Wang;Xuanyu Liang;Qinghe Niu;Qizhi Wang;Jinyi Zhuo;Xuebin Su;Genmao Zhou;Lixin Zhao;Wei Yuan;Jiangfang Chang;Yongxiang Zheng;Jienan Pan;Zhenzhi Wang;Zhongmin Ji
    • Nuclear Engineering and Technology
    • /
    • v.55 no.8
    • /
    • pp.2773-2784
    • /
    • 2023
  • It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.

The Development of an Electroconductive SiC-ZrB2 Ceramic Heater through Spark Plasma Sintering

  • Ju, Jin-Young;Kim, Cheol-Ho;Kim, Jae-Jin;Lee, Jung-Hoon;Lee, Hee-Seung;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.538-545
    • /
    • 2009
  • The SiC-$ZrB_2$ composites were fabricated by combining 30, 35, 40 and 45vol.% of Zirconium Diboride (hereafter, $ZrB_2$) powders with Silicon Carbide (hereafter, SiC) matrix. The SiC-$ZrB_2$ composites, the sintered compacts, were produced through Spark Plasma Sintering (hereafter, SPS), and its physical, electrical, and mechanical properties were examined. Also, the thermal image analysis of the SiC-$ZrB_2$ composites was examined. Reactions between $\beta$-SiC and $ZrB_2$ were not observed via X-Ray Diffractometer (hereafter, XRD) analysis. The relative density of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$, and SiC+45vol.%$ZrB_2$ composites were 88.64%, 76.80%, 79.09% and 88.12%, respectively. The XRD phase analysis of the sintered compacts demonstrated high phase of SiC and $ZrB_2$ but low phase of $ZrO_2$. Among the SiC-$ZrB_2$ composites, the SiC+35vol.%$ZrB_2$ composite had the lowest flexural strength, 148.49MPa, and the SiC+40vol.%$ZrB_2$ composite had the highest flexural strength, 204.85MPa, at room temperature. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$, SiC+40vol.%$ZrB_2$ and SiC+45vol.%$ZrB_2$ composites were $6.74\times10^{-4}$, $4.56\times10^{-3}$, $1.92\times10^{-3}$, and $4.95\times10^{-3}\Omega{\cdot}cm$ at room temperature, respectively. The electrical resistivities of the SiC+30vol.%$ZrB_2$, SiC+35vol.%$ZrB_2$ SiC+40vol.%$ZrB_2$ and SiC+45[vol.%]$ZrB_2$ composites had Positive Temperature Coefficient Resistance (hereafter, PTCR) in the temperature range from $25^{\circ}C$ to $500^{\circ}C$. The V-I characteristics of the SiC+40vol.%$ZrB_2$ composite had a linear shape. Therefore, it is considered that the SiC+40vol.%$ZrB_2$ composite containing the most outstanding mechanical properties, high resistance temperature coefficient and PTCR characteristics among the sintered compacts can be used as an energy friendly ceramic heater or electrode material through SPS.

Physical Properties of Sintered Body for Coal Fly Ash-clay Slip of Varying Dispersion State (석탄회-점토계 슬립의 분산상태에 따른 소결체의 물리적 특성)

  • 강승구;이기강;김유택;김정환
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.7
    • /
    • pp.677-682
    • /
    • 2003
  • The physical properties of sintered body made from 3 kinds of slip, F (Flocculated), M (Moderate), and D (Dispersed) for coal fly ash 70-clay 30 (wt%) were studied in terms of slip states and pore size distribution of sintered bodies. The floc particle size distribution for slip F was wider than slip D and the slip F contained flocs larger than 11 $\mu\textrm{m}$. The pore size distribution of the green body of all slips ranged over 1∼4 $\mu\textrm{m}$. The pores smaller than 1 $\mu\textrm{m}$ almost disappeared during the sintering process, while the larger pore of 2.5∼3 $\mu\textrm{m}$ growed by 1 $\mu\textrm{m}$. The pore distribution for the green body of slip F became a narrow in width and high in height after sintering and the large pore limit in a slip F sintered body was 5.1 $\mu\textrm{m}$ which is smaller than that of other slip. The slip F rather flocculated was favorable over slip D well dispersed, in offering a higher compressive strength. From these results, the mechanical strength of sintered body is dependent on the pore distribution which could be controlled by dispersion state of the slips.

Effect of artificial aging on mechanical and physical properties of CAD-CAM PMMA resins for occlusal splints

  • Julia Correa Raffaini;Eduardo Jose Soares;Rebeca Franco de Lima Oliveira;Rocio Geng Vivanco;Ayodele Alves Amorim;Ana Lucia Caetano Pereira;Fernanda Carvalho Panzeri Pires-de-Souza
    • The Journal of Advanced Prosthodontics
    • /
    • v.15 no.5
    • /
    • pp.227-237
    • /
    • 2023
  • PURPOSE. This study aimed to assess and compare the color stability, flexural strength (FS), and surface roughness of occlusal splints fabricated from heat-cured acrylic resin, milled polymethyl methacrylate (PMMA)-based resin, and 3D-printed (PMMA) based-resin. MATERIALS AND METHODS. Samples of each type of resin were obtained, and baseline measurements of color and surface roughness were recorded. The specimens were divided into three groups (n = 10) and subjected to distinct aging protocols: thermomechanical cycling (TMC), simulated brushing (SB), and control (without aging). Final assessments of color and surface roughness and three-point bending test (ODM100; Odeme) were conducted, and data were statistically analyzed (2-way ANOVA, Tukey, P <.05). RESULTS. Across all resin types, the most significant increase in surface roughness (Ra) was observed after TMC (P < .05), with the 3D-printed resin exhibiting the lowest Ra (P < .05). After brushing, milled resin displayed the highest Ra (P < .05) and greater color alteration (∆E00) compared to 3D-printed resin. The most substantial ∆E00 was recorded after brushing for all resins, except for heat-cured resin subjected to TMC. Regardless of aging, milled resin exhibited the highest FS (P < .05), except when compared to 3D-printed resin subjected to TMC. Heat-cured resin exposed to TMC demonstrated the lowest FS, different (P < .05) from the control. Under control conditions, milled resin exhibited the highest FS, different (P < .05) from the brushed group. 3D-printed resin subjected to TMC displayed the highest FS (P < .05). CONCLUSION. Among the tested resins, 3D-printed resin demonstrated superior longevity, characterized by minimal surface roughness and color alterations. Aging had a negligible impact on its mechanical properties.

BIOLOGICAL RESPONSES OF OSTEOBLAST-LIKE CELLS TO DIFFERENT TITANIUM SURFACE BY ANODIZING MODIFICATION

  • Kim Myung-Joo;Kim Chang-Whe;Lim Young-Jun;Park Hyun-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.751-763
    • /
    • 2005
  • Statement of problem. To improve a direct implant fixation to the bone, various strategies have been developed focusing on the surface of materials. The surface quality of the implant depends on the chemical, physical, mechanical and topographical properties of the surface. The different properties will interact with each other and a change in thickness of the oxide layer may also result in a change in surface energy, the surface topography and surface, chemical composition. However, there is limited the comprehensive study with regard to changed surface and biologic behavior of osteoblast by anodization. Purpose of study. The aim of this study was to analyze the characteristics of an oxide layer formed and to evaluate the cellular biologic behaviors on titanium by anodic oxidation (anodization) by cellular proliferation, differentiation, ECM formation and gene expression. And the phospholipase activity was measured on the anodized surface as preliminary study to understand how surface properties of Ti implant are transduced into downstream cellular events. Methods and Materials. The surface of a commercially pure titanium(Grade 2) was modified by anodic oxidation. The group 1 samples had a machined surface and other three experimental specimens were anodized under a constant voltage of 270 V(Group 2), 350 V(Group 3), and 450 V(Group 4). The specimen characteristics were inspected using the following five categories; the surface morphology, the surface roughness, the thickness of oxide layer, the crystallinity, and the chemical composition of the oxide layer. Cell numbers were taken as a marker for cell proliferation. While the expression of alkaline phosphatase and Runx2 (Cbfa1) was used as early differentiation marker for osteoblast. The type I collagen production was determined, which constitutes the main structural protein of the extracellular matrix. Phospholipase $A_2$ and D activity were detected. Results. (1) The anodized titanium had a porous oxide layer, and there was increase in both the size and number of pores with increasing anodizing voltage. (2) With increasing voltage, the surface roughness and thickness of the oxide film increased significantly (p<0.01), the $TiO_2$phase changed from anatase to rutile. During the anodic oxidization, Ca and P ions were more incorporated into the oxide layer. (3) The in vitro cell responses of the specimen were also dependant on the oxidation conditions. With increasing voltage, the ALP activity, type I collagen production, and Cbfa 1 gene expression increased significantly (p<0.01), while the cell proliferation decreased. (4) In preliminary study on the relation of surface property and phospholipase, PLD activity was increased but $PLA_2$ activity did not changed according to applied voltage. Conclusion. The anodized titanium shows improved surface characteristics than the machined titanium. The surface properties acquired by anodization appear to give rise more mature osteoblast characteristics and might result in increased bone growth, and contribute to the achievement of a tight fixation. The precise mechanism of surface property signaling is not known, may be related to phospholipase D.

The effect of the strength and wetting characteristics of Bis-GMA/TEGDMA-based adhesives on the bond strength to dentin (2,2-Bis[4-(2-methoxy-3-methacryloyloxy propoxy) phenyl] propane을 함유한 상아질 접착레진의 물성이 접착강도에 미치는 영향)

  • Park, Eun-Sook;Kim, Chang-Keun;Bae, Ji-Hyun;Cho, Byeong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.2
    • /
    • pp.139-148
    • /
    • 2011
  • Objectives: This study investigated the effect of the strength and wetting characteristics of adhesives on the bond strength to dentin. The experimental adhesives containing various ratios of hydrophobic, low-viscosity Bis-M-GMA, with Bis-GMA and TEGDMA, were made and evaluated on the mechanical properties and bond strength to dentin. Materials and Methods: Five experimental adhesives formulated with various Bis-GMA/Bis-MGMA/TEGDMA ratios were evaluated on their viscosity, degree of conversion (DC), flexural strength (FS), and microtensile bond strength (MTBS). The bonded interfaces were evaluated with SEM and the solubility parameter was calculated to understand the wetting characteristics of the adhesives. Results: Although there were no significant differences in the DC between the experimental adhesives at 48 hr after curing (p > 0.05), the experimental adhesives that did not contain Bis-GMA exhibited a lower FS than did those containing Bis-GMA (p < 0.05). The experimental adhesives that had very little to no TEGDMA showed significantly lower MTBS than did those containing a higher content of TEGDMA (p < 0.05). The formers exhibited gaps at the interface between the adhesive layer and the hybrid layer. The solubility parameter of TEGDMA approximated those of the components of the primed dentin, rather than Bis-GMA and Bis-M-GMA. Conclusions: To achieve a good dentin bond, a strong base monomer, such as Bis-GMA, cannot be completely replaced by Bis-M-GMA for maintaining mechanical strength. For compatible copolymerization between the adhesive and the primed dentin as well as dense cross-linking of the adhesive layer, at least 30% fraction of TEGDMA is also needed.

Study of Alkaline Peroxide Mechanical Pulp Made from Pinus densiflora (국내산 소나무로 제조된 APMP 특성 연구)

  • Lee, Ji-Young;Nam, Hyegeong;Kim, Chul-Hwan;Kwon, Sol;Park, Dong-Hun;Joo, Su-Yeon;Lee, Min-Seok
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.100-110
    • /
    • 2016
  • Alkaline Peroxide Mechanical Pulping (APMP) of Pinus densiflora harvested from domestic mountains was explored. APMP contributes to various advantages including pulp quality, elimination of the need for a bleaching process, and energy savings. Sequential treatment of impregnation of bleaching chemicals and refining not only overcome the concern of alkaline darkening of wood chips during chemical impregnation, but it also brightens the chips to the desired brightness levels suitable for writing and printing papers. APMP pulping from Pinus densiflora was greatly influenced by the dosage levels of hydrogen peroxide and sodium hydroxide. Alkaline peroxide treatment was carried out by applying one of three levels of hydrogen peroxide (1.5, 3, and 4.5% based on the oven-dried weight of the wood chips) and one of three levels of sodium hydroxide (1.5, 3, and 4.5% based on the oven-dried weight of the wood chips). Other chemicals including a peroxide stabilizers and metal chelation were constantly added for all treatments. Chemical treatment with a liquor-to-wood ration of 9:1 was carried out in a laboratory digestor. Compared to BTMP, APMP pulping displayed outstanding characteristics including the less requirement of refining energy, the better improvement of tensile strength, the more reduction of shives, and the greater increase of pulp brightness. In particular, when 4.5% of hydrogen peroxide with impregnation during 90 minutes was used, the brightness of APMP reached 64.9% ISO. Even though bulk of APMP was decreased with the increase of sodium hydroxide, a better and improved balance could be achieved between optical and strength properties. The spent liquor obtained from the discharge of the impregnation process at the dosage level of 4.5% hydrogen peroxide exhibited an equal level of residual peroxide with BTMP. In conclusion, APMP pulping showed successful results with Pinus densiflora due to its better response to the development of optical and physical properties compared to TMP pulping.

The Thermal and Mechanical Properties of Epoxy Composites Including Boron Carbide Surface Treated with Iron Oxide and Tungsten (철산화물과 텅스텐으로 표면 처리된 보론카바이드를 포함하는 에폭시 조성물의 열적·기계적 물성)

  • Kim, Taehee;Lee, Wonjoo;Seo, Bongkuk;Lim, Choong-Sun
    • Journal of Adhesion and Interface
    • /
    • v.19 no.3
    • /
    • pp.113-117
    • /
    • 2018
  • Boron carbide is lower in hardness than diamond or boron nitride but has a hardness of more than 30 GPa and is used for manufacturing tank armors and ammo shells due to its high hardness. It is also used as a neutron absorber due to its ability to absorb neutrons, which is increasing its use in nuclear power projects. Neutrons have no interaction with electrons and are known to pass through the material without interactions. Along with boron carbide, the atoms with high interaction with neutrons are hydrogen, and high hydrogen concentration polyesters and epoxy polymers including boron are used as materials for manufacturing products for nuclear power generation waste. In this paper, the surface of boron carbide is treated with iron oxide and tungsten to improve interaction between modified boron carbide and epoxy polymer. XRD and XPS were used to confirm that iron oxide and tungsten are well attached on the surface of boron carbide, respectively. The mechanical strength of the surface treated boron carbide was measured by a universal testing machine (UTM) and the dynamic characteristics of the cured product were observed by using a dynamic analyzer (DMA).