DOI QR코드

DOI QR Code

Reformability evaluation of blasting-enhanced permeability in in situ leaching mining of low-permeability sandstone-type uranium deposits

  • Wei Wang (Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education) ;
  • Xuanyu Liang (Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education) ;
  • Qinghe Niu (Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education) ;
  • Qizhi Wang (Innovation Center of Disaster Prevention and Mitigation Technology for Geotechnical and Structural Systems of Hebei Province (Preparation)) ;
  • Jinyi Zhuo (Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education) ;
  • Xuebin Su (Department of In Situ Leaching Technology, Beijing Research Institute of Chemical Engineering and Metallurgy) ;
  • Genmao Zhou (Department of In Situ Leaching Technology, Beijing Research Institute of Chemical Engineering and Metallurgy) ;
  • Lixin Zhao (Department of In Situ Leaching Technology, Beijing Research Institute of Chemical Engineering and Metallurgy) ;
  • Wei Yuan (Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education) ;
  • Jiangfang Chang (Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education) ;
  • Yongxiang Zheng (Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education) ;
  • Jienan Pan (School of Resources & Environment, Henan Polytechnic University) ;
  • Zhenzhi Wang (School of Resources & Environment, Henan Polytechnic University) ;
  • Zhongmin Ji (School of Resources & Environment, Henan Polytechnic University)
  • Received : 2022.05.17
  • Accepted : 2023.03.27
  • Published : 2023.08.25

Abstract

It is essential to evaluate the blasting-enhanced permeability (BEP) feasibility of a low-permeability sandstone-type uranium deposit. In this work, the mineral composition, reservoir physical properties and rock mechanical properties of samples from sandstone-type uranium deposits were first measured. Then, the reformability evaluation method was established by the analytic hierarchy process-entropy weight method (AHP-EWM) and the fuzzy mathematics method. Finally, evaluation results were verified by the split Hopkinson Pressure Bar (SHPB) experiment and permeability test. Results show that medium sandstone, argillaceous sandstone and siltstone exhibit excellent reformability, followed by coarse sandstone and fine sandstone, while the reformability of sandy mudstone is poor and is not able to accept BEP reservoir stimulation. The permeability improvement and the distribution of damage fractures before and after the SHPB experiment confirm the correctness of evaluation results. This research provides a reformability evaluation method for the BEP of the low-permeability sandstone-type uranium deposit, which contributes to the selection of the appropriate regional and stratigraphic horizon of the BEP and the enhanced ISL of the low-permeability sandstone-type uranium deposit.

Keywords

Acknowledgement

This study was funded by the National Natural Science Foundation of China (51979170, U1967208, 11902208, U2244228), the Hebei Natural Science Foundation (E2021210128, E2021210077, E2020208071), the Science and Technology Project of Hebei Education Department (QN2021129, BJK2022010), the S&T Program of Hebei (22374102D, 216Z5403G), the Opening Foundation of Key Laboratory of Roads and Railway Engineering Safety Control (Shijiazhuang Tiedao University), Ministry of Education (STDTKF202102), the Autonomous Subject of School of Civil Engineering of Shijiazhuang Tiedao University (TMXN2204), the Natural Science Foundation of Henan Province (222300420366) and the Graduate Innovation Funding Project of Shijiazhuang Tiedao University (YC2022002).

References

  1. B. Satybaldiyev, J. Lehto, J. Suksi, H. Tuovinen, B. Uralbekov, M. Burkitbayev, Understanding sulphuric acid leaching of uranium from ore by means of 234U/238U activity ratio as an indicator, Hydrometallurgy 155 (2015) 125-131. https://doi.org/10.1016/j.hydromet.2015.04.017
  2. S. Zeng, Y. Shen, B. Sun, K. Tan, S. Zhang, W. Ye, Fractal kinetic characteristics of uranium leaching from low permeability uranium-bearing sandstone, Nucl. Eng. Technol. 54 (4) (2022) 1175-1184. https://doi.org/10.1016/j.net.2021.10.013
  3. S. Zeng, Y. Shen, B. Sun, N. Zhang, S. Zhang, S. Feng, Pore structure evolution characteristics of sandstone uranium ore during acid leaching, Nucl. Eng. Technol. 53 (12) (2021) 4033-4041. https://doi.org/10.1016/j.net.2021.06.011
  4. M.Z. Abzalov, Sandstone-hosted uranium deposits amenable for exploitation by in situ leaching technologies, Appl, Earth Sci. 121 (2) (2012) 55-64. https://doi.org/10.1179/1743275812Y.0000000021
  5. X.B. Su, Z.M. Du, Development and prospect of China Uranium in-situ leaching technology, China Min. Mag. 21 (9) (2012) 79-83 [In Chinese].
  6. V.F. Bondici, J.R. Lawrence, N.H. Khan, J.E. Hill, E. Yergeau, G.M. Wolfaardt, J. Warner, D.R. Korber, Microbial communities in low permeability, high ph uranium mine tailings: characterization and potential effects, J. Appl. Microbiol. 114 (6) (2013) 1671-1686. https://doi.org/10.1111/jam.12180
  7. H. Wang, L. Zhang, H. Lei, Y. Wang, H. Liu, X. Li, X. Su, Potential for uranium release under geologic CO2 storage conditions: the impact of Fe(III), Int. J. Greenh. Gas Control 107 (2021), 103266.
  8. Q. Niu, L. Cao, S. Sang, W. Wang, W. Yuan, J. Chang, X. Jia, W. Zheng, Z. Zhang, A small-scale experimental study of CO2 enhanced injectivity methods of the high-rank coal, Petrol. Sci. 18 (5) (2021) 1427-1440. https://doi.org/10.1016/j.petsci.2021.08.006
  9. X. Wang, J. Pan, K. Wang, P. Mou, J. Li, Fracture variation in high-rank coal induced by hydraulic fracturing using X-ray computer tomography and digital volume correlation, Int. J. Coal Geol. 252 (2022), 103942.
  10. V.R.S. De Silva, P.G. Ranjith, M.S.A. Perera, B. Wu, W.A.M. Wanniarachchi, A low energy rock fragmentation technique for in-situ leaching, J. Clean. Prod. 204 (2018) 586-606. https://doi.org/10.1016/j.jclepro.2018.08.296
  11. W. Wang, X.C. Li, Study of enhanced permeability methods and their feasibility in low-permeability sandstone-type uranium deposit, Rock Soil Mech. 30 (2009) 2309-2314 [In Chinese].
  12. W. Yuan, W. Wang, X. Su, L. Wen, J. Chang, Experimental and numerical study on the effect of water-decoupling charge structure on the attenuation of blasting stress, Int. J. Rock Mech. Min. Sci. 124 (2019), 104133.
  13. W. Yuan, X. Su, W. Wang, L. Wen, J. Chang, Numerical study of the contributions of shock wave and detonation gas to crack generation in deep rock without free surfaces, J. Pet. Sci. Eng. 177 (2019) 699-710. https://doi.org/10.1016/j.petrol.2019.02.004
  14. Q. Wang, X. Su, B. Wu, W. Wang, W. Yuan, A coupled damage-permeability constitutive model for brittle rocks subjected to explosive loading, Adv. Civ. Eng. 2018 (2018), 6816974.
  15. B. Sun, S. Hou, S. Zeng, X. Bai, S. Zhang, J. Zhang, 3D characterization of porosity and minerals of low-permeability uranium-bearing sandstone based on multi-resolution image fusion, Nucl. Sci. Tech. 31 (10) (2020) 105.
  16. X. Liu, W. Zhang, Z. Qu, T. Guo, Y. Sun, M. Rabiei, Q. Cao, Feasibility evaluation of hydraulic fracturing in hydrate-bearing sediments based on analytic hierarchy process-entropy method (AHP-EM), J. Nat. Gas Sci. Eng. 81 (2020), 103434.
  17. Q. Niu, L. Cao, S. Sang, W. Wang, X. Zhou, W. Yuan, Z. Ji, J. Chang, M. Li, Experimental study on the softening effect and mechanism of anthracite with CO2 injection, Int. J. Rock Mech. Min. 138 (2021), 104614.
  18. H. Zhu, L. Tao, D. Liu, Q. Liu, X. Jin, Fracability estimation for longmaxi shale: coupled brittleness, stress-strain and fracture, Arabian J. Sci. Eng. 43 (11) (2018) 6639-6652. https://doi.org/10.1007/s13369-018-3422-9
  19. X. Su, F. Li, L. Su, Q. Wang, The experimental study on integrated hydraulic fracturing of coal measures gas reservoirs, Fuel 270 (2020), 117527.
  20. W. Xu, J. Zhao, J. Xu, Fracability evaluation method for tight sandstone oil reservoirs, Nat. Resour. Res. 30 (6) (2021) 4277-4295. https://doi.org/10.1007/s11053-021-09907-4
  21. Z.X. Huang, K. Yang, C.Y. Peng, C.Z. Ai, M. Jiang, J.T. Deng, W.J. Liu, How to Identify the Best Candidate Fracturing Zone: a Review of Current Fracability Evaluation Method IOP Conference Series: Earth and Environmental Science, IOP Publishing, 2021, 62071.
  22. J. Wu, S. Zhang, H. Cao, M. Zheng, P. Sun, X. Luo, Fracability evaluation of shale gas reservoir-a case study in the lower cambrian niutitang formation, northwestern hunan, China, J. Pet. Sci. Eng. 164 (2018) 675-684. https://doi.org/10.1016/j.petrol.2017.11.055
  23. Y. Ye, S. Tang, Z. Xi, Brittleness evaluation in shale gas reservoirs and its influence on fracability, Energies 13 (2) (2020) 388.
  24. W. Xu, J. Zhao, J. Xu, Fracability evaluation method for tight sandstone oil reservoirs, Nat. Resour. Res. 30 (2021) 4277-4295. https://doi.org/10.1007/s11053-021-09907-4
  25. L. Sui, Y. Ju, Y. Yang, Y. Yang, A. Li, A quantification method for shale fracability based on analytic hierarchy process, Energy 115 (2016) 637-645. https://doi.org/10.1016/j.energy.2016.09.035
  26. W. Zhai, J. Li, Y. Zhou, Application of catastrophe theory to fracability evaluation of deep shale reservoir, Arabian J. Geosci. 12 (2019) 1-7. https://doi.org/10.1007/s12517-018-4128-8
  27. J. Jiang, W. Yang, Y. Cheng, K. Zhao, S. Zheng, Pore structure characterization of coal particles via MIP, N2 and CO2 adsorption: effect of coalification on nanopores evolution, Powder Technol. 354 (2019) 136-148. https://doi.org/10.1016/j.powtec.2019.05.080
  28. Y. Jin, C. Wang, S. Liu, W. Quan, X. Liu, Systematic definition of complexity assembly in fractal porous media, Fractals-Complex Geom, Patterns Scaling Nat. Soc. 28 (5) (2020), 2050079.
  29. Y. Jin, X. Li, M. Zhao, X. Liu, H. Li, A mathematical model of fluid flow in tight porous media based on fractal assumptions, Int. J. Heat Mass Tran. 108 (2017) 1078-1088. https://doi.org/10.1016/j.ijheatmasstransfer.2016.12.096
  30. K. Chen, X. Liu, L. Wang, D. Song, B. Nie, T. Yang, Influence of sequestered supercritical co2 treatment on the pore size distribution of coal across the rank range, Fuel 306 (2021), 121708.
  31. F. Wang, Y. Cheng, S. Lu, K. Jin, W. Zhao, Influence of coalification on the pore characteristics of middle-high rank coal, Energy Fuel. 28 (9) (2014) 5729-5736. https://doi.org/10.1021/ef5014055
  32. Q. Yang, J. Xue, W. Li, X. Du, Q. Ma, K. Zhan, Z. Chen, Comprehensive evaluation and interpretation of mercury intrusion porosimetry data of coals based on fractal theory, tait equation and matrix compressibility, Fuel 298 (2021), 120823.
  33. Q. Zhang, W. Wu, L. Liu, H. Yang, L. Wang, Y. Xie, Y. Zhu, Pore structure and fractal characteristics of ultra-low permeabilityreservoirs in Yanchang Formation in Zhenbei area, Ordos Basin, Petrol. Geol. Recov. Effic. 27 (2020) (2020) 20-31 [In Chinese].
  34. A.W. Hatheway, The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring; 1974-2006, Association of Environmental & Engineering Geologists, 2009.
  35. Y. Miao, C. Liu, Z. He, Y. Ma, H. Wu, D. Wang, S. Iglauer, Analysis of dynamic damage-induced porosity changes of granites in leaching mining technique based on SHPB test, Geofluids 2020 (2020), 8844168.
  36. V.A. Pushkov, A.L. Mikhailov, A.N. Tsibikov, A.A. Okinchits, A.V. Yurlov, A.M. Vasil Ev, T.G. Naidanova, A.V. Bakanova, Studying the characteristics of explosives under dynamic load using the split Hopkinson pressure bar technique, Combust. Explo. Shock+ 57 (2021) 112-121. https://doi.org/10.1134/S0010508221010135
  37. Y.X. Zhou, K. Xia, X.B. Li, H.B. Li, G.W. Ma, J. Zhao, Z.L. Zhou, F. Dai, Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials, Int. J. Rock Mech. Min. Sci. 49 (2012) 105-112. https://doi.org/10.1016/j.ijrmms.2011.10.004
  38. Q. Niu, L. Cao, S. Sang, X. Zhou, W. Wang, W. Yuan, Z. Ji, H. Wang, Y. Nie, Study on the anisotropic permeability in different rank coals under influences of supercritical CO2 adsorption and effective stress and its enlightenment for CO2 enhance coalbed methane recovery, Fuel 262 (2020), 116515.
  39. X. Liu, B. Nie, K. Guo, C. Zhang, Z. Wang, L. Wang, Permeability enhancement and porosity change of coal by liquid carbon dioxide phase change fracturing, Eng. Geol. 287 (2021), 106106.
  40. Z. Wang, J. Pan, Q. Hou, Q. Niu, J. Tian, H. Wang, X. Fu, Changes in the anisotropic permeability of low-rank coal under varying effective stress in Fukang mining area, China, Fuel 234 (2018) 1481-1497. https://doi.org/10.1016/j.fuel.2018.08.013
  41. Q. Niu, L. Cao, S. Sang, X. Zhou, S. Liu, Experimental study of permeability changes and its influencing factors with CO2 injection in coal, J. Nat. Gas Sci. Eng. 61 (2019) 215-225. https://doi.org/10.1016/j.jngse.2018.09.024
  42. S. Bin, J. Yiwen, L. Shuangfang, W. Jianguang, W. Jingming, L. Wuyang, Q. Yu, Y. Kun, C. Wangang, Q. Peng, Reconstruction evaluation method and application of coal measure three gases co-mining reservoirs in Linxing Block, East Ordos Basin, Adv. Geosci. 10 (2) (2020) 85-99. https://doi.org/10.12677/AG.2020.102010
  43. Y. Li, J. Peng, C. Huang, M. Lian, T. Xu, Y. Zhang, K. Bo, B. Feng, J. Zhou, Multi-fractured stimulation technique of hydraulic fracturing assisted by the DTH-hammer-induced impact fractures, Geothermics 82 (2019) 63-72. https://doi.org/10.1016/j.geothermics.2019.05.016
  44. S. Yin, L. Dong, X. Yang, R. Wang, Experimental investigation of the petro-physical properties, minerals, elements and pore structures in tight sandstones, J. Nat. Gas Sci. Eng. 76 (2020), 103189.
  45. Z. Gao, J. Feng, J. Cui, X. Wang, C. Zhou, Y. Shi, Physical simulation and quantitative calculation of increased feldspar dissolution pores in deep reservoirs, Petrol. Explor. Dev. 44 (3) (2017) 387-398. https://doi.org/10.1016/S1876-3804(17)30045-9
  46. X. Chai, S. Shi, Y. Yan, J. Li, L. Zhang, C. Qi, Key blasting parameters for deep-hole excavation in an underground tunnel of phosphorite mine, Adv. Civ. Eng. 2019 (2019), 4924382.
  47. M. Koopialipoor, A. Fallah, D.J. Armaghani, A. Azizi, E.T. Mohamad, Three hybrid intelligent models in estimating flyrock distance resulting from blasting, Eng. Comput. 35 (1) (2019) 243-256. https://doi.org/10.1007/s00366-018-0596-4
  48. M. Karakus, B. Tutmez, Fuzzy and multiple regression modelling for evaluation of intact rock strength based on point load, schmidt hammer and sonic velocity, Rock Mech. Rock Eng. 39 (1) (2006) 45-57. https://doi.org/10.1007/s00603-005-0050-y
  49. Z. Wu, Q. Niu, W. Li, N.H. Lin, S. Liu, Ground stability evaluation of a coalmining area: a case study of Yingshouyingzi mining area, China, J. Geophys. Eng. 15 (5) (2018) 2252-2265. https://doi.org/10.1088/1742-2140/aac991
  50. T.L. Saaty, What Is the Analytic Hierarchy Process? Mathematical Models for Decision Support, Springer, 1988, pp. 109-121.
  51. L. Sui, Y. Ju, Y. Yang, Y. Yang, A. Li, A quantification method for shale fracability based on analytic hierarchy process, Energy 115 (2016) 637-645. https://doi.org/10.1016/j.energy.2016.09.035
  52. D. Wang, H. Ge, X. Wang, J. Wang, F. Meng, Y. Suo, P. Han, A novel experimental approach for fracability evaluation in tight-gas reservoirs, J. Nat. Gas Sci. Eng. 23 (2015) 239-249. https://doi.org/10.1016/j.jngse.2015.01.039
  53. Q. Li, D. Luo, G. Feng, H. Ma, X.A. Wei, G. Chen, Dynamic characteristics of liquid co2 phase change fracturing, using experimental technique, Geotech. Geol. Eng. 37 (4) (2019) 3387-3398. https://doi.org/10.1007/s10706-019-00853-w
  54. L. Minmin, L. Weimin, Y. Gaowei, Fractal and pore structure analysis of structural anisotropic coal under different impact loads, Environ. Earth Sci. 79 (13) (2020) 323.
  55. J. Peng, F. Zhang, C. Du, X. Yang, Effects of confining pressure on crater blasting in rock-like materials under electric explosion load, Int. J. Impact Eng. 139 (2020), 103534.
  56. Z. Wang, J. Pan, Q. Hou, B. Yu, M. Li, Q. Niu, Anisotropic characteristics of low-rank coal fractures in the Fukang mining area, China, Fuel 211 (2018) 182-193. https://doi.org/10.1016/j.fuel.2017.09.067
  57. Q. Niu, Q. Wang, W. Wang, J. Chang, M. Chen, H. Wang, N. Cai, L. Fan, Responses of multi-scale microstructures, physical-mechanical and hydraulic characteristics of roof rocks caused by the supercritical CO2-water-rock reaction, Energy 238 (2022), 121727.