DOI QR코드

DOI QR Code

Effect of artificial aging on mechanical and physical properties of CAD-CAM PMMA resins for occlusal splints

  • Julia Correa Raffaini (Department of Dental Materials and Prosthodontics, Ribeirao Preto School of Dentistry - University of Sao Paulo) ;
  • Eduardo Jose Soares (Department of Pediatric Dentistry, Ribeirao Preto School of Dentistry - University of Sao Paulo) ;
  • Rebeca Franco de Lima Oliveira (Department of Dental Materials and Prosthodontics, Ribeirao Preto School of Dentistry - University of Sao Paulo) ;
  • Rocio Geng Vivanco (Department of Dental Materials and Prosthodontics, Ribeirao Preto School of Dentistry - University of Sao Paulo) ;
  • Ayodele Alves Amorim (Department of Dental Materials and Prosthodontics, Ribeirao Preto School of Dentistry - University of Sao Paulo) ;
  • Ana Lucia Caetano Pereira (The Korean Academy Of Prosthodontics) ;
  • Fernanda Carvalho Panzeri Pires-de-Souza (Department of Dental Materials and Prosthodontics, Ribeirao Preto School of Dentistry - University of Sao Paulo)
  • Received : 2023.05.04
  • Accepted : 2023.10.25
  • Published : 2023.10.31

Abstract

PURPOSE. This study aimed to assess and compare the color stability, flexural strength (FS), and surface roughness of occlusal splints fabricated from heat-cured acrylic resin, milled polymethyl methacrylate (PMMA)-based resin, and 3D-printed (PMMA) based-resin. MATERIALS AND METHODS. Samples of each type of resin were obtained, and baseline measurements of color and surface roughness were recorded. The specimens were divided into three groups (n = 10) and subjected to distinct aging protocols: thermomechanical cycling (TMC), simulated brushing (SB), and control (without aging). Final assessments of color and surface roughness and three-point bending test (ODM100; Odeme) were conducted, and data were statistically analyzed (2-way ANOVA, Tukey, P <.05). RESULTS. Across all resin types, the most significant increase in surface roughness (Ra) was observed after TMC (P < .05), with the 3D-printed resin exhibiting the lowest Ra (P < .05). After brushing, milled resin displayed the highest Ra (P < .05) and greater color alteration (∆E00) compared to 3D-printed resin. The most substantial ∆E00 was recorded after brushing for all resins, except for heat-cured resin subjected to TMC. Regardless of aging, milled resin exhibited the highest FS (P < .05), except when compared to 3D-printed resin subjected to TMC. Heat-cured resin exposed to TMC demonstrated the lowest FS, different (P < .05) from the control. Under control conditions, milled resin exhibited the highest FS, different (P < .05) from the brushed group. 3D-printed resin subjected to TMC displayed the highest FS (P < .05). CONCLUSION. Among the tested resins, 3D-printed resin demonstrated superior longevity, characterized by minimal surface roughness and color alterations. Aging had a negligible impact on its mechanical properties.

Keywords

Acknowledgement

This study was funded by the National Council for Scientific and Technological Development (CNPq) - Brazil. Grant number [100859/2021-6].

References

  1. Amin A, Meshramkar R, Lekha K. Comparative evaluation of clinical performance of different kind of occlusal splint in management of myofascial pain. J Indian Prosthodont Soc 2016;16:176-81.  https://doi.org/10.4103/0972-4052.176521
  2. Berntsen C, Kleven M, Heian M, Hjortsjo C. Clinical comparison of conventional and additive manufactured stabilization splints. Acta Biomater Odontol Scand 2018;4:81-9.  https://doi.org/10.1080/23337931.2018.1497491
  3. Zhang SH, He KX, Lin CJ, Liu XD, Wu L, Chen J, Rausch-Fan X. Efficacy of occlusal splints in the treatment of temporomandibular disorders: a systematic review of randomized controlled trials. Acta Odontol Scand 2020;78:580-9.  https://doi.org/10.1080/00016357.2020.1759818
  4. Koralakunte PR. Prosthetic management of a masticatory muscle disorder with customized occlusal splint. J Clin Diagn Res 2014;8:259-61.  https://doi.org/10.7860/JCDR/2014/6867.4179
  5. Salmi M, Paloheimo KS, Tuomi J, Ingman T, Makitie A. A digital process for additive manufacturing of occlusal splints: a clinical pilot study. J R Soc Interface 2013;10:20130203. 
  6. Gupt P, Nagpal A, Samra RK, Verma R, Kaur J, Abrol S. A comparative study to check fracture strength of provisional fixed partial dentures made of autopolymerizing polymethylmethacrylate resin reinforced with different materials: An in vitro study. J Indian Prosthodont Soc 2017;17:301-9.  https://doi.org/10.4103/jips.jips_79_17
  7. Singh A, Garg S. Comparative evaluation of flexural strength of provisional crown and bridge materials-an invitro study. J Clin Diagn Res 2016;10:ZC72-7.  https://doi.org/10.7860/JCDR/2016/19582.8291
  8. Almaraz GMD, Martinez AG, Sanchez RH, Gomez EC, Tapia MG, Juarez JCV. Ultrasonic fatigue testing on the polymeric material PMMA, used in odontology applications. Procedia Struct Integr 2017;3:562-70.  https://doi.org/10.1016/j.prostr.2017.04.039
  9. Mehrpour H, Farjood E, Giti R, Barfi Ghasrdashti A, Heidari H. Evaluation of the flexural strength of interim restorative materials in fixed prosthodontics. J Dent (Shiraz) 2016;17:201-6. 
  10. Gibreel M, Perea-Lowery L, Vallittu PK, Lassila L. Characterization of occlusal splint materials: CAD-CAM versus conventional resins. J Mech Behav Biomed Mater 2021;124:104813. 
  11. Marcel R, Reinhard H, Andreas K. Accuracy of CAD/CAM-fabricated bite splints: milling vs 3D printing. Clin Oral Investig 2020;24:4607-15.  https://doi.org/10.1007/s00784-020-03329-x
  12. Vasques MT, Lagana DC. Accuracy and Internal Fit of 3D printed Occlusal Splint, according to the printing position: A technique report. Clin Lab Res Dent 2018:1-6. doi: 10.11606/issn.2357-8041.clrd.2018.148012 
  13. Shaikh S, Nahar P, Ali HM. Current perspectives of 3d printing in dental applications. Braz Dent Sci 2021;24:1-9.  https://doi.org/10.14295/bds.2021.v24i3.2481
  14. Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater 2016;32:54-64.  https://doi.org/10.1016/j.dental.2015.09.018
  15. Hata K, Ikeda H, Nagamatsu Y, Masaki C, Hosokawa R, Shimizu H. Development of dental poly(methyl methacrylate)-based resin for stereolithography additive manufacturing. Polymers (Basel) 2021;13:4435. 
  16. Alhotan A, Yates J, Zidan S, Haider J, Silikas N. Flexural strength and hardness of filler-reinforced PMMA targeted for denture base application. Materials (Basel) 2021;14:2659. 
  17. Berli C, Thieringer FM, Sharma N, Muller JA, Dedem P, Fischer J, Rohr N. Comparing the mechanical properties of pressed, milled, and 3D-printed resins for occlusal devices. J Prosthet Dent 2020;124:780-6.  https://doi.org/10.1016/j.prosdent.2019.10.024
  18. Ribeiro AKC, de Freitas RFCP, de Carvalho IHG, de Miranda LM, da Silva NR, de Fatima Dantas de Almeida L, Zhang Y, da Fonte Porto Carreiro A, de Assuncao E Souza RO. Flexural strength, surface roughness, micro-CT analysis, and microbiological adhesion of a 3D-printed temporary crown material. Clin Oral Investig 2023;27:2207-20.  https://doi.org/10.1007/s00784-023-04941-3
  19. Benli M, Eker Gumus B, Kahraman Y, Gokcen-Rohlig B, Evlioglu G, Huck O, Ozcan M. Surface roughness and wear behavior of occlusal splint materials made of contemporary and high-performance polymers. Odontology 2020;108:240-50.  https://doi.org/10.1007/s10266-019-00463-1
  20. Sahin C, Ergin A, Ayyildiz S, Cosgun E, Uzun G. Effect of biofilm formation, and biocorrosion on denture base fractures. J Adv Prosthodont 2013;5:140-6.  https://doi.org/10.4047/jap.2013.5.2.140
  21. Grymak A, Aarts JM, Ma S, Waddell JN, Choi JJE. Comparison of hardness and polishability of various occlusal splint materials. J Mech Behav Biomed Mater 2021;115:104270. 
  22. Alp G, Johnston WM, Yilmaz B. Optical properties and surface roughness of prepolymerized poly(methyl methacrylate) denture base materials. J Prosthet Dent 2019;121:347-52.  https://doi.org/10.1016/j.prosdent.2018.03.001
  23. Maciel JLB, Geng Vivanco R, Pires-de-Souza FCP. Remineralization, color stability and surface roughness of tooth enamel brushed with activated charcoal-based products. J Esthet Restor Dent 2023;35:1144-1151.  https://doi.org/10.1111/jerd.13057
  24. Wiegand A, Kuhn M, Sener B, Roos M, Attin T. Abrasion of eroded dentin caused by toothpaste slurries of different abrasivity and toothbrushes of different filament diameter. J Dent 2009;37:480-4.  https://doi.org/10.1016/j.jdent.2009.03.005
  25. DeLong R, Sakaguchi RL, Douglas WH, Pintado MR. The wear of dental amalgam in an artificial mouth: a clinical correlation. Dent Mater 1985;1:238-42.  https://doi.org/10.1016/S0109-5641(85)80050-6
  26. Kohal RJ, Wolkewitz M, Tsakona A. The effects of cyclic loading and preparation on the fracture strength of zirconium-dioxide implants: an in vitro investigation. Clin Oral Implants Res 2011;22:808-14.  https://doi.org/10.1111/j.1600-0501.2010.02067.x
  27. Ghinea R, Perez MM, Herrera LJ, Rivas MJ, Yebra A, Paravina RD. Color difference thresholds in dental ceramics. J Dent 2010;38 Suppl 2:e57-64.  https://doi.org/10.1016/j.jdent.2010.07.008
  28. Paravina RD, Ghinea R, Herrera LJ, Bona AD, Igiel C, Linninger M, Sakai M, Takahashi H, Tashkandi E, Perez Mdel M. Color difference thresholds in dentistry. J Esthet Restor Dent 2015;27 Suppl 1:S1-9.  https://doi.org/10.1111/jerd.12149
  29. Freitas-Pontes KM, Silva-Lovato CH, Paranhos HF. Mass loss of four commercially available heat-polymerized acrylic resins after toothbrushing with three different dentifrices. J Appl Oral Sci 2009;17:116-21.  https://doi.org/10.1590/S1678-77572009000200009
  30. Oliveira LV, Mesquita MF, Henriques GE, Consani RL, Fragoso WS. Effect of polishing technique and brushing on surface roughness of acrylic resins. J Prosthodont 2008;17:308-11.  https://doi.org/10.1111/j.1532-849X.2007.00274.x
  31. Tieh MT, Waddell JN, Choi JJE. Optical properties and color stability of denture teeth-a systematic review. J Prosthodont 2022;31:385-98.  https://doi.org/10.1111/jopr.13429
  32. Sexson JC, Phillips RW. Studies on the effects of abrasives on acrylic resins. J Prosthet Dent 1951;1:454-71.  https://doi.org/10.1016/0022-3913(51)90031-5
  33. Jain V, Platt JA, Moore K, Spohr AM, Borges GA. Color stability, gloss, and surface roughness of indirect composite resins. J Oral Sci 2013;55:9-15.  https://doi.org/10.2334/josnusd.55.9
  34. Sahin O, Koroglu A, Dede DO, Yilmaz B. Effect of surface sealant agents on the surface roughness and color stability of denture base materials. J Prosthet Dent 2016;116:610-6.  https://doi.org/10.1016/j.prosdent.2016.03.007
  35. Dimitrova M, Corsalini M, Kazakova R, Vlahova A, Barile G, Dell'Olio F, Tomova Z, Kazakov S, Capodiferro S. Color stability determination of CAD-CAM milled and 3D printed acrylic resins for denture bases: a narrative review. J Compos Sci 2022;6:201. 
  36. Gregorius WC, Kattadiyil MT, Goodacre CJ, Roggenkamp CL, Powers JM, Paravina RD. Effects of ageing and staining on color of acrylic resin denture teeth. J Dent 2012;40 Suppl 2:e47-54.  https://doi.org/10.1016/j.jdent.2012.09.009
  37. Rayyan MM, Aboushelib M, Sayed NM, Ibrahim A, Jimbo R. Comparison of interim restorations fabricated by CAD-CAM with those fabricated manually. J Prosthet Dent 2015;114:414-9.  https://doi.org/10.1016/j.prosdent.2015.03.007
  38. Alfouzan AF, Alotiabi HM, Labban N, Al-Otaibi HN, Al Taweel SM, AlShehri HA. Color stability of 3D-printed denture resins: effect of aging, mechanical brushing and immersion in staining medium. J Adv Prosthodont 2021;13:160-71.  https://doi.org/10.4047/jap.2021.13.3.160
  39. Gruber S, Kamnoedboon P, Ozcan M, Srinivasan M. CAD-CAM complete denture resins: an in vitro evaluation of color stability. J Prosthodont 2021;30:430-9.  https://doi.org/10.1111/jopr.13246
  40. Shin JW, Kim JE, Choi YJ, Shin SH, Nam NE, Shim JS, Lee KW. Evaluation of the Color stability of 3D-printed crown and bridge materials against various sources of discoloration: an in vitro study. Materials (Basel) 2020;13:5359. 
  41. Ayaz EA, Bagis B, Turgut S. Effects of thermal cycling on surface roughness, hardness and flexural strength of polymethylmethacrylate and polyamide denture base resins. J Appl Biomater Funct Mater 2015;13:e280-6.  https://doi.org/10.5301/jabfm.5000236
  42. Nam NE, Shin SH, Lim JH, Shim JS, Kim JE. Effects of artificial tooth brushing and hydrothermal aging on the mechanical properties and color stability of dental 3D printed and CAD-CAM materials. Materials (Basel) 2021;14:6207. 
  43. Al-Qahtani AS, Tulbah HI, Binhasan M, Abbasi MS, Ahmed N, Shabib S, Farooq I, Aldahian N, Nisar SS, Tanveer SA, Vohra F, Abduljabbar T. Surface properties of polymer resins fabricated with subtractive and additive manufacturing techniques. Polymers (Basel) 2021;13:4077. 
  44. Al-Dwairi ZN, Tahboub KY, Baba NZ, Goodacre CJ. A Comparison of the flexural and impact strengths and flexural modulus of CAD-CAM and conventional heat-cured polymethyl methacrylate (PMMA). J Prosthodont 2020;29:341-9.  https://doi.org/10.1111/jopr.12926
  45. Fiore AD, Meneghello R, Brun P, Rosso S, Gattazzo A, Stellini E, Yilmaz B. Comparison of the flexural and surface properties of milled, 3D-printed, and heat polymerized PMMA resins for denture bases: An in vitro study. J Prosthodont Res 2022;66:502-8.  https://doi.org/10.2186/jpr.JPR_D_21_00116
  46. Arslan M, Murat S, Alp G, Zaimoglu A. Evaluation of flexural strength and surface properties of prepolymerized CAD-CAM PMMA-based polymers used for digital 3D complete dentures. Int J Comput Dent 2018;21:31-40. 
  47. Iwaki M, Kanazawa M, Arakida T, Minakuchi S. Mechanical properties of a polymethyl methacrylate block for CAD-CAM dentures. J Oral Sci 2020;62:420-2.  https://doi.org/10.2334/josnusd.19-0448
  48. Chung YJ, Park JM, Kim TH, Ahn JS, Cha HS, Lee JH. 3D printing of resin material for denture artificial teeth: chipping and indirect tensile fracture resistance. Materials (Basel) 2018;11:1798. 
  49. Perea-Lowery L, Gibreel M, Vallittu PK, Lassila L. Evaluation of the mechanical properties and degree of conversion of 3D printed splint material. J Mech Behav Biomed Mater 2021;115:104254.