• Title/Summary/Keyword: mechanical and deteriorating properties

Search Result 12, Processing Time 0.033 seconds

Changes in Mechanical Properties of Sanitary Nonwoven Fabrics by Chitosan/Nanosilver Mixed Solution Treatment (위생용 부직포의 키토산/은나노 혼합용액 처리에 의한 역학적 특성 변화)

  • Bae, Hyun-Sook
    • Textile Coloration and Finishing
    • /
    • v.22 no.2
    • /
    • pp.163-172
    • /
    • 2010
  • In order to investigate the changes in mechanical properties of sanitary nonwoven fabrics actually used as a top sheet, the fabric was treated with a mixture of chitosan and nanosilver colloidal solution in accordance with the prescribed ratio. The former is a natural polymer with excellent biocompatibility and the latter can give an additional performance while compensating the weaknesses of chitosan of deteriorating adherence efficiency. It was shown that the bending and shearing characteristics of the chitosan/nanosilver treated fabrics decreased, which helped to make it softer, smoother and more flexible. The shape stability and drapability of the treated fabrics improved. As KES-FB system evaluation showed that Koshi was deduced, and both Numeri and Fukurami were increased. Thereby, the chitosan/nanosilver treated fabrics were smoother to provide elasticity. In the change of hand value compared to chitosan only treatment, a better THV was shown in the fabrics treated with chitosan/nanosilver mixed solution than the fabric treated with chitosan alone.

Physical and Mechanical Characteristics of Phellodendron amure Ruprecht (황벽나무의 물리·역학적 특성)

  • Kim, Hyun-Woo;Byeon, Hee-Seop;Kim, Byung-Ro
    • Journal of the Korean Wood Science and Technology
    • /
    • v.45 no.5
    • /
    • pp.519-524
    • /
    • 2017
  • Physical, mechanical and deteriorating properties of Phellodendron amure were investigated. Air dried density located indoor was 0.41 but $0.43g/cm^3$ outdoor. In oven dry shrinkage, T/R ratio for located indoor was 1.40 but 1.32 outdoor. Hygroscopic property at $40^{\circ}C$ with 90% relative humidity was 16.30% for indoor and 15.80% for outdoor. Compressive strength for outdoor conditioned sample was 43.81 MPa but 40.33 MPa for indoor conditioned. Also bending strenght for outdoor conditioned was 84.63 MPa but 68.80 MPa for indoor conditioned. Impact strength was 3.43 and $4.00J/cm^2$ indoor and outdoor, respectively. Hardness at cross-section was 47.92 and 49.20 MPa indoor and outdoor, respectively. With one-year conditioning at indoor or outdoor, there was no significantly different in strength properties, which came from strong resistance for deterioration. Also Phellodendron amure wood showed dimensionally stable raw material based on low T/R ratio.

Microstructure and Properties of HIPped P/M High Speed Steels (열간등압소결 된 고속도 공구강의 미세조직 및 기계적 특성)

  • Gang Li;Park, Woojin;S. Ahn
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1997.04a
    • /
    • pp.35-35
    • /
    • 1997
  • High$\cdot$speed steels (HSS) with a combination of good wear resistance and toughness are finding new, non-cutting applications such as rolls and rollers. In this paper, the research interests are focused on the microstructural evolution of a SMo-6W series high speed steel during HIPping and the effect of HIPping process parameters on its microstructure and properties. HIPping process variables includes; temperature, pressure and hold time. The microstructures of the HIPped HSS were examined by SEM, OM and X-ray diffraction whereas the properties measured were the relative density, hardness, and bend strength at room temperature. In HIPped materials, MC and M6C were the major carbides formed in a matrix of martensite. The effect of powder size on the microstructure and mechanical properties of HIPped materials was insignificant. However, HIPping temperature and hold time strongly affected the carbide size and distribution. The results show that at proper HIPping temperature and pressure conditions, the final products approach the full density ( > 99% RD). The particle boundaries were completely eliminated without an eminent microstructural coarsening. The bend strength was about 2.3 Gpa, which is superior to cast HSS. At excessive HIPping temperatures, rapid carbide coarsening occurred, thus deteriorating the mechanical properties of the P/M steels.

  • PDF

Evaluation of Thin Film Residual Stress through the Theoretical Analysis of Nanoindentation Curve (나노 압입곡선의 이론적 분석을 통한 박막의 잔류응력 평가)

  • Lee, Yun-Hee;Jang, Jae-Il;Kwon, Dong-Il
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1270-1279
    • /
    • 2002
  • Residual stress is a dominant obstacle to efficient production and safe usage of device by deteriorating the mechanical strength and failure properties. Therefore, we proposed a new thin film stress-analyzing technique using a nanoindentation method. For this aim, the shape change in the indentation load-depth curve during the stress-relief in film was theoretically modeled. The change in indentation depth by load-controlled stress relaxation process was related to the increase or decrease in the applied load using the elastic flat punch theory. Finally, the residual stress in thin film was calculated from the changed applied load based on the equivalent stress interaction model. The evaluated stresses for diamond-like carbon films from this nanoindentation analysis were consistent with the results from the conventional curvature method.

Synthesis of UV-Curable Modified (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate Acrylate (자외선 경화형 변성 (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate 아크릴레이트의 합성)

  • Lee, Jongmin;Yi, Hwanpyo;Lee, Sanggun;Park, Hyungnam;Choi, Kangsik;Kim, Dojin
    • Korean Journal of Materials Research
    • /
    • v.27 no.4
    • /
    • pp.199-205
    • /
    • 2017
  • In this study, (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate acrylate was synthesized by reacting (3,4-epoxycyclohexane)methyl 3,4-epoxycyclohexylcarboxylate with acrylic acid to minimize hardening shrinkage and to improve heat resistance, which are known as disadvantages of photopolymers for 3D printing application. Urethane acrylate was synthesized by reacting 1,3,5-triazine-2,4,6-triamino alcohol, 2-hexylethyl acrylate, and isophorone diisocyanate in order to improve the mechanical properties without deteriorating the heat resistance. The physical properties before and after the synthesis of the acrylate and the mechanical properties when the urethane acrylate was applied were investigated. The reaction progress of the composite was examined by FTIR and $^{13}C$ NMR. The heat deflection temperature, flexural strength, and surface hardness of the molding were measured. The curing behavior by Photo-DSC ultraviolet irradiation was also examined.

Equal Channel Angular Pressing of Rapidly Solidified Al-20 wt % Si Alloy Powder Extrudates (급속응고 Al-20 wt% Si 합금분말 압출재의 ECAP)

  • Yoon, Seung-Chae;Hong, Soon-Jik;Seo, Min-Hong;Quang, Pham;Kim, Hyoung-Seop
    • Journal of Powder Materials
    • /
    • v.11 no.2
    • /
    • pp.97-104
    • /
    • 2004
  • In this paper processing and mechanical properties of Al-20 wt% Si alloy was studied. A bulk form of Al-20Si alloy was prepared by gas atomizing powders having the powder size of 106-145 ${\mu}m$ and powder extrusion. The powder extrudate was subsequently equal channel angular pressed up to 8 passes in order to refine grain and Si particle. The microstructure of the gas atomized powders, powder extrudates and equal channel angular pressed samples were investigated using a scanning electron microscope and X-ray diffraction. The mechanical properties of the bulk sample were measured by compressive tests and a micro Victors hardness test. Equal channel angular pressing was found to be effective in matrix grain and Si particle refinement, which enhanced the strength and hardness of the Al-2OSi alloy without deteriorating ductility in the range of experimental strain of 30%.

An enhancement in wear property of UHMWPE used in joint prosthesis (인공관절에 사용되는 UHMWPE의 내마모성 향상에 관한 연구)

  • Kim, K.T.;Lee, C.W.;Choi, J.B.;Choi, K.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1996 no.11
    • /
    • pp.3-6
    • /
    • 1996
  • The Ultra-high molecular weight polyethylene (UHMWPE) is exclusivity used as the articulation component with metal or ceramic materials in artificial joint prosthesis because of its good mechanical properties. In the long term however, wear of UHMWPE causes complex problems and hence causes loosening of He prosthesis. In this study, we tried to enhance the wear property of UHMWPE by attaching a hydrophilic graft on the UHMWPE surface and by improving surface hardness without deteriorating the mechanical properties of UHMWPE. This was achieved by ion implantation and by ${\gamma}$-irradiation to the surface in acrylic acid solution and by photo-polymerization in divinylbenzen (DVB), diallysophthalate (DAIP) solution. The wear test was performed by a wear testing machine of ball-on-disk type devised by the authors. The UHMWPE with hydrophlic surface and increased surface hardness developed by above treatments showed less volumetric wear.

  • PDF

Verification of mechanical failure mode through corrosion test of a pump for soil sterilizer injection

  • Han-Ju Yoo;Jooseon Oh;Sung-Bo Shim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.4
    • /
    • pp.817-828
    • /
    • 2023
  • Deteriorating soil physical properties and increasing soil pathogens due to the continuous cultivation of field crops are the leading causes of productivity deterioration. Crop rotation, soil heat treatment, and chemical control are used as pest control methods; however, each has limitations in wide application to domestic agriculture. In particular, chemical control requires improvement due to direct exposure to sterilizing solution, odor, and high-intensity work. To improve the overall domestic agricultural environment, the problems of time and cost, such as field maintenance and cultivation scale, must be addressed; therefore, mechanization technology for chemical control must be secured to derive improvement effects in a short period. Most related studies are focused on the control effect of the DMDS (dimethyl disulfide) sterilizer, and research on the performance of the sterilization spray device has been conducted after its introduction in Korea, but research on the corrosion suitability of the material is lacking. This study conducted a corrosion test to secure the corrosion resistance of a soil sterilizer injection pump, and a mechanical failure mode by corrosion by the material was established. The corrosion test comprised operation and neglect tests in which the sterilizing solution was circulated in the pump and remained in the pump, respectively. As a result of the corrosion test, damage occurred due to the weakening of the mechanical strength of the graphite material, and corrosion resistance to aluminum, stainless steel, fluororubber, and PPS (polyphenylene sulfide) materials was confirmed.

Effects of Fe and Cu Addition on the Microstructure and Tensile Properties of Al-Si-Mg Alloy for Compound Casting (복합주조용 Al-Si-Mg합금의 미세조직 및 인장성질에 미치는 Fe 및 Cu 첨가의 영향)

  • Kim, Jeong-Min;Jung, Ki-Chae;Kim, Chae-Young;Shin, Je-sik
    • Journal of Korea Foundry Society
    • /
    • v.41 no.1
    • /
    • pp.3-10
    • /
    • 2021
  • In the compound casting between the aluminum alloy and the cast iron, the iron component may be dissolved from the cast iron during the process and mixed into the aluminum melt, thereby forming various iron-containing intermetallic compounds and significantly deteriorating the tensile properties of the aluminum alloy. On the other hand, unlike Fe, which is added as an impurity, Cu is added to improve the mechanical properties of the aluminum alloy. In this study, the change in microstructure and tensile properties of aluminum alloys due to the addition of Fe and Cu was investigated. A large amount of iron-containing compounds such as coarse Al5FeSi phases were formed when the iron content was 1% or more, and the tensile properties were significantly reduced. In the case of the aluminum alloy to which Cu was added, an Al2Cu phase was additionally formed and the tensile strength was clearly improved.

Development of Artificial Neural Networks for Stability Assessment of Tunnel Excavation in Discontinuous Rock Masses and Rock Mass Classification (불연속 암반내 터널굴착의 안정성 평가 및 암반분류를 위한 인공 신경회로망 개발)

  • 문현구;이철욱
    • Tunnel and Underground Space
    • /
    • v.3 no.1
    • /
    • pp.63-79
    • /
    • 1993
  • The design of tunnels in rock masses often demands more informations on geologic features and rock mass properties than acquired by usual field survey and laboratory testings. In practice, the situation that a perfect set of geological and mechanical input data is given to geomechanics design engineer is rare, while the engineers are asked to achieve a high level of reliability in their design products. This study presents an artificial neural network which is developed to resolve the difficulties encountered in conventional design techniques, particulary the problem of deteriorating the confidence of existing numerical techniques such as the finite element, boundary element and distinct element methods due to the incomplete adn vague input data. The neural network has inferring capabilities to identify the possible failure modes, support requirements and its timing for underground openings, from previous case histories. Use of the neural network has resulted in a better estimate of the correlation between systems of rock mass classifications such as the RMR and Q systems. A back propagation learning algorithm together with a multi-layer network structure is adopted to enhance the inferential accuracy and efficiency of the neural network. A series of experiments comparing the results of the neural network with the actual field observations are performed to demonstrate the abilities of the artificial neural network as a new tunnel design assistance system.

  • PDF