• Title/Summary/Keyword: mechanical abrasion

Search Result 316, Processing Time 0.026 seconds

Effects of Mixed Oxidizer on the W-CMP Characteristics (혼합 산화제가 W-CMP 특성에 미치는 영향)

  • 박창준;서용진;김상용;이우선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.12S
    • /
    • pp.1181-1186
    • /
    • 2003
  • Chemical Mechanical Polishing (CMP) is an essential dielectric planarization in multilayer microelectronic device fabrication. In the CMP process, it is necessary to minimize the extent of surface defect formation while maintaining good planarity and optimal material removal rates. The polishing mechanism of W-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. Thus, it is important to understand the effect of oxidizer on W passivation layer, in order to obtain higher removal rate (RR) and very low non-uniformity (NU %) during W-CMP process. In this paper, we compared the effects of oxidizer or W-CMP process with three different kind of oxidizers with 5 wt% hydrogen peroxide such as Fe(NO$_3$)$_3$, H$_2$O$_2$, and KIO$_3$. The difference in removal rate and roughness of W in stable and unstable slurries are believed to caused by modification in the mechanical behavior of Al$_2$O$_3$ particles in presence of surfactant stabilizing the slurry.

Study on Adhesion and Mechanical Properties of Adhesive Resin Using Microcapsule with Isocyanate Compound (이소시아네이트를 포함하는 Microcapsule을 사용한 접착수지의 특성에 관한 연구)

  • Kim, Dong Ho;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.15 no.3
    • /
    • pp.109-115
    • /
    • 2014
  • In this study, we synthesized and identified microcapsule containing isocyanate, and investigated the mechanical and adhesion properties of polyurethane resin by adding microcapsule. We found out that the core material of microcapsule and the component weight fraction of microcapsule from the FT-IR and TGA analysis. From the results of adhesion and mechanical property tests, we confirmed that in case of using microcapsule for adhesive resin composition, adhesion strength, tensile strength and abrasion were improved by cross-linking reaction between urethane and IPDI in microcapsule.

Pot Life Assessment and Mechanical Property of Fast Curing Polyurethane Developed with Eco-friendly Pre-polymer

  • Joseph, Jessy;Moon, Junho;Kong, Tae Woong;Kim, Dong Ho;Oh, Jeong Seok
    • Elastomers and Composites
    • /
    • v.55 no.1
    • /
    • pp.13-19
    • /
    • 2020
  • 4,4'-Methylenebis(2-chlorobenzenamine) (MOCA)-free fast curing polyurethanes were prepared. In this study, the processibility of a fast curing polyurethane system was characterized by assessing the pot life. The obtained pot life of the polyurethane was 6-8 s, indicating that this prepolymer-curative system is appropriate for ribbon flow casting. The influence of the NCO index on the viscosity and mechanical properties was evaluated. The viscosity, tensile strength, tear strength, and hardness of the as-prepared polyurethanes showed an increasing trend, with an increase in the NCO index, whereas the elongation at break increased initially and then decreased with an increase in the NCO index. The gel fraction and crosslink density showed a direct correlation with the NCO index, which substantiated the improved mechanical properties at the higher NCO index. The coefficients of friction and abrasion deteriorated with an increase in the NCO index.

Mechanical Properties and Impact Resistance of Hybrid Fiber Reinforced Concrete with Type of Reinforcing Fibers for Precast Concrete (하이브리드섬유보강 프리캐스트 콘크리트의 보강섬유 종류에 따른 역학적 특성 및 충격저항성)

  • Oh, Ri-On;Park, Chan Gi
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.29-35
    • /
    • 2013
  • The objective of the current study is to evaluate the effects depending on the types of reinforcing fibers being influential in view of mechanical properties and impact resistance of hybrid fiber reinforced concrete (HFRC) for applications to precast concrete structure. Hybrid fibers applied therefor were three types such as PP/MSF (polypropylene fiber+macro synthetic fiber), PVA/MAF (polyvinyl alcohol fiber+MSF) and JUTE/MSF (natural jute fiber+MSF), where the volume fraction of PP, PVA and natural jute was applied with 0.2 %, respectively, while based on 0.05 % volume fraction of MSF. The HFRC was tested for slump, compressive strength, flexural strength and impact resistance. The test result demonstrated that mixture of such hybrid fibers improve compressive strength, flexural strength and impact resistance of concrete. Moreover, it was found that HFRCs to which hydrophilic fibers, i.e. PVA/MSF and JUTE/MSF, were mixed show more improved features that HFRC to which non-hydrophilic fiber, i.e. PP/MSF was mixed. Meanwhile, the finding that PVA/MSF HFRC exhibited better performance than JUTE/MSF HFRC was attributed from the former having higher aspect ratio than that of the latter.

The Cu-CMP's features regarding the additional volume of oxidizer (산화제 배합비에 따른 연마입자 크기와 Cu-CMP의 특성)

  • Kim, Tae-Wan;Lee, Woo-Sun;Choi, Gwon-Woo;Seo, Young-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.20-23
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing(CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. However, as the IMD layer gets thinner, micro-scratches are becoming as major defects. Chemical-Mechanical polishing(CMP) of conductors is a key process in Damascene patterning of advanced interconnect structure. The effect of alternative commercial slurries pads, and post-CMP cleaning alternatives are discuss, with removal rate, scratch dentisty, surface roughness, dishing, erosion and particulate density used as performance metrics. Electroplated copper deposition is a mature process from a historical point of view, but a very young process from a CMP perspective. While copper electro deposition has been used and studied for decades, its application to Cu damascene wafer processing is only now gaining complete acceptance in the semiconductor industry. The polishing mechanism of Cu-CMP process has been reported as the repeated process of passive layer formation by oxidizer and abrasion action by slurry abrasives. however it is important to understand the effect of oxidizer on copper passivation layer in order to obtain higher removal rate and non-uniformity during Cu-CMP process. In this paper, we investigated the effects of oxidizer on Cu-CMP process regarding the additional volume of oxidizer.

  • PDF

Effect of Atmosphere on Corrosive Wear of Alloy Cast Iron for Cylinder Liner of Large Ship Engine (선박 엔진의 실린더 라이너용 합금주철의 부식마멸에 미치는 분위기의 영향)

  • Koo, Hyunho;Cho, Yonsang;Cho, Hwayoung;Park, Heungsik
    • Tribology and Lubricants
    • /
    • v.28 no.5
    • /
    • pp.233-239
    • /
    • 2012
  • The engine of a large ship operates under wet conditions using a fuel such as bunker C oil, which includes sulfur and many impurities. A cylinder liner made of cast iron is very susceptible to damage such as scuffing on the surface. This scuffing can reliably be attributed to the destruction of the oil film and the corrosion wear caused by water and sulfur included in the fuel, along with abrasion impurities and poor lubricants. In this study, a reciprocating friction and wear test was carried out with a cast iron specimen, which was used to simulate an engine cylinder in a corrosive environment. Base-oil and stirred oil containing distilled water, NaCl solution, and dilute sulfuric acid were used as lubricants. The friction surface was analyzed using a microscope and EDAX, and the friction coefficient was measured using a load-cell under each experimental condition. We then attempted to investigate the damage to the cylinder liner using the results.

Tribological Characteristics of Paraffin Liquid Oil with Nanodiamond and Effects of Surface Hardness on Wear Properties (나노다이아몬드를 첨가한 오일의 트라이볼로지 특성 및 이에 미치는 표면 경도의 영향)

  • Lee, Gyu-Sun;Kim, Hyun-Soo;Lee, Jeong-Hoon;Park, Tae-Hee;Lee, Jung-Suk;Lee, Young-Ze
    • Tribology and Lubricants
    • /
    • v.27 no.6
    • /
    • pp.321-325
    • /
    • 2011
  • Nanodiamond was dispersed in paraffin liquid oil to investigate the effects of nanodiamond at the marginally lubricated condition. Scuffing test and immediate loading sliding wear test were conducted using the fabricated nanodiamond oil. As a result, dispersion of nanodiamond in oil leads to increase in scuffing life, and nanodiamond contents affects the scuffing life. In case of immediate loading sliding wear test, the result was different according to hardness of specimen. If hardness of specimen was low, abrasion of nanodiamond occurred actively. If hardness of specimen was increased, however, nanodiamond can act as a spacer or rolling between contacting surfaces.

A Study on the Identification Method of Lubrication Characteristics for Journal Bearing (저널베어링의 윤활상태 판별 기법에 관한 연구)

  • Kim, Myung-Hwan;Lee, Sang-Don;Cho, Yong-Joo
    • Tribology and Lubricants
    • /
    • v.25 no.1
    • /
    • pp.56-60
    • /
    • 2009
  • A journal bearing is used in a hydrodynamic lubrication state, but it becomes a boundary lubrication state that asperity of a contact part touch each other when pressure is too high and an enough oil film is not formed by viscosity change due to lubricating oil temperature. At this time, abrasion due to contact between a journal and a bearing is unavoidable, and scuffing damage that the journal adheres to the bearing occurs if the process is repeated. Damage of the journal bearing is an important problem because it gives huge damage to a machine and can generate large accidents such as economic loss and human life damage. In this study, method for using the pull-up resistor concept was introduced as the monitoring technology. This monitoring system is important to enhance reliability of the engine.

Multi response optimization of surface roughness in hard turning with coated carbide tool based on cutting parameters and tool vibration

  • Keblouti, Ouahid;Boulanouar, Lakhdar;Azizi, Mohamed Walid.;Bouziane, Abderrahim
    • Structural Engineering and Mechanics
    • /
    • v.70 no.4
    • /
    • pp.395-405
    • /
    • 2019
  • In the present work, the effects of cutting parameters on surface roughness parameters (Ra), tool wear parameters (VBmax), tool vibration (Vy) and material removal rate (MRR) during hard turning of AISI 4140 steel using coated carbide tool have been evaluated. The relationships between machining parameters and output variables were modeled using response surface methodology (RSM). Analysis of variance (ANOVA) was performed to quantify the effect of cutting parameters on the studied machining parameters and to check the adequacy of the mathematical model. Additionally, Multi-objective optimization based desirability function was performed to find optimal cutting parameters to minimize surface roughness, and maximize productivity. The experiments were planned as Box Behnken Design (BBD). The results show that feed rate influenced the surface roughness; the cutting speed influenced the tool wear; the feed rate influenced the tool vibration predominantly. According to the microscopic imagery, it was observed that adhesion and abrasion as the major wear mechanism.

Alloying Effects of BCC-Fe Based Low-Alloy Steel on Mechanical and Thermal Expansion Properties for a Plant Engineering: Ab Initio Calculation (플랜트 엔지니어링을 위한 BCC-Fe 기반 저합금강의 기계적 및 열팽창 특성 합금 효과: Ab Initio 계산)

  • Myungjae Kim;Jongwook Kwak;Jiwoong Kim;Kyung-Nam Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.422-429
    • /
    • 2023
  • High-strength low-alloy steel is one of the widely used materials in onshore and offshore plant engineering. We investigated the alloying effect of solute atoms in α-Fe based alloy using ab initio calculations. Empirical equations were used to establish the effect of alloying on the Vicker's hardness, screw energy coefficient, and edge dislocation energy coefficient of the steel. Screw and edge energy coefficients were improved by the addition of V and Cr solute atoms. In addition, the addition of trace quantities of V, Cr, and Mn enhanced abrasion resistance. Solute atoms and contents with excellent mechanical properties were selected and their thermal conductivity and thermal expansion behavior were investigated. The addition of Cr atom is expected to form alloys with low thermal conductivity and thermal expansion coefficient. This study provides a better understanding of the state-of-the-art research in low-alloy steel and can be used to guide researchers to explore and develop α-Fe based alloys with improved properties, that can be fabricated in smart and cost-effective manners.