• Title/Summary/Keyword: measuring impedance

Search Result 318, Processing Time 0.025 seconds

A Study on the Validation of Somatotype Drawing as a Instrument of Measuring Obesity Level by Body Component Analysis (생체전기임피던스법을 이용한 체성분 분석에 의한 신체외형도(Somatotype Drawing)의 타당성 연구 - 비만평가도구로서의 타당도 평가 -)

  • Lee Seoung Eun;Jung Young Mi;Chung Kil Soo
    • Journal of Korean Public Health Nursing
    • /
    • v.18 no.2
    • /
    • pp.299-311
    • /
    • 2004
  • Purpose: Somatotype drawing developed by Sorensen et al.(1983) has been evaluated as a simple instrument of obesity level without real somatic measuring as height and weight. This study was designed to validate somatotype drawings for obesity assessment by bioelectrical impedance body component analysis. Method: At first questionnaire of somatotype drawing was done. Subjects were measured body component by bioelectrical impedance analysis as weight, BMI(body mass index), WHR(waist-hip ratio), body water, protein mass, mineral mass, body fat mass, skeletal muscle mass, soft lean mass, fat free mass and percent body fat. We evaluated correlations between these data and somatotype drawings and tried to grouping of somatotype drawings with the means of major body component value. Result: The data were collected from 205 college women whose height and weight were $161.2\pm4.8,\;55\pm8.3$. Spearman's correlation coefficients of somatotype drawing were 0.74 with BMI, 0.68 with weight 0.69 with body fat mass, 0.65 with WHR. 0.64 with percent body fat after adiusted age. The grade of somatotype drawings were grouped as 1-2, 3-4, 5-6. 7-9 by BMI, body fat mass, weight, 1, 2-4, 5-6, 7-9 by WHR and 1-2, 3-4, 5-9 by percent body fat(ANOVA and Duncan's method). Conclusion: So quick instrument using somatotype drawings were useful tools for evaluation of obesity level and is applicable to screen degree of body fat in self-administered questionnaire survey.

  • PDF

Evaluation of the Accuracy of Grounding Impedance Measurement of Grounding Grid (접지그리드의 접지임피던스 측정의 정확도 평가)

  • Choi, Jong-Hyuk;Choi, Young-Chul;Jeong, Dong-Cheol;Kim, Dong-Seong;Lee, Bok-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.146-153
    • /
    • 2009
  • Recently, the common grounding systems are adapted in most large structures. Since the ground resistance is insufficient to evaluate the performance of grounding systems, it is needed to measure grounding impedance. Even though the methods of measuring grounding impedance of large grounding systems are presented in IEEE standard 81.2, but they have not been described in detail. In this paper, we present the accurate method of measuring grounding impedance based on the revised fall-of-potential method and measurement errors due to earth mutual resistance and ac mutual coupling depending on locating test electrodes at remote earth were examined for the 15[m]$\times$15[m] grounding grid. As a result, the measurement error due to earth mutual resistance is decreased when the distance to auxiliary electrodes increased. To get rid of measurement errors due to mutual coupling, the potential lead should be installed at a right angle to the current lead. When the angle between the potential and the current leads is an acute angle or an obtuse angle, the mutual couple voltage is positive or negative, respectively. Generally, the measurement errors due to mutual coupling with an obtuse angle route are lower than those with an acute angle route.

On the in situ Measurement Method of Headphones using Head And Torso Simulator (HATS를 이용한 헤드폰의 in situ 측정방법에 관하여)

  • Kang, Kyeong-Ok;Kang, Seong-Hoon
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.15-27
    • /
    • 1992
  • The standard measuring method of the frequency characteristics of headphones has been needed because different results come from the different measuring methods because of the lack of the reasonable measuring method of headphone characteristics, for example, in the case of psycho-acoustic experiments with headphones. In this paper, based on this fact, we studied the measurement method of headphones based on the natural hearing condition of human being, that is in situ measuring method, by measuring the headphone frequency characteristics using an artificial ear and a newly proposed device, HATS(Head And Torso Simulator). From the result of this paper, we could see that the method appropriate to a so called in situ condition was the one wi9th HATS, Because HATS simulated more correctly the acoustic impedance of the ear and the diffraction effect of the human head than the artificial ear.

  • PDF

Development of Inspection System for Transparent Pattern of the Electromagnetic Resonance Pen (전자펜 입력용 투명패턴 검사장치 개발)

  • Ryu, Young Kee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.6
    • /
    • pp.640-645
    • /
    • 2020
  • To produce an input device stably using the transparent electromagnetic pattern of an electromagnetic induction method, pattern inspection is required in advance in the production process. Various methods of inspecting the capacitive pattern for hand-touch have been proposed, but it is difficult to find the related technical data for the pattern inspection method of the transparent electromagnetic induction method. In this study, to develop an inspection system for a fused electromagnetic resonance pen sensor with a copper-etched metal mesh pattern, an inspection algorithm and method for measuring the antenna impedance inside the sensor was proposed by measuring only the exposed FPCB connector. The proposed method was configured as a control board consisting of a microprocessor that forms a loop between specific channels according to the command of a computer, a computer-controlled by the Windows program, an LCR meter measuring the impedance between specific channels, and transmitting the measurement results back to the computer. An evaluation of the proposed system and measurements of nine specimens showed that it could detect the defects of the sensor used in the actual product.

Impedance Change of Aluminum Pad Coated with Epoxy Molding Compound for Semiconductor Encapsulant (반도체 패키지 봉지재용 에폭시 수지 조성물이 코팅된 알루미늄 패드의 임피던스 변화)

  • 이상훈;서광석;윤호규
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.37-44
    • /
    • 2000
  • The corrosion behavior of aluminum pad coated with epoxy molding compound (EMC) was investigated using electrochemical impedance spectroscopy (EIS). The impedance change was evaluated by the absorption of deionized water (DI water) to EMC coating and the interface between EMC and aluminum. During the absorption a decrease in resistance and thus an increase in capacitance of EMC as well as the interface of EMC/Al could be observed. Up to about 170 hours of absorption the EMC was saturated with the water molecules and ions generated from EMC. Subsequently the ionic water was penetrated to the interface and finally the corrosion of aluminum was occurred by the Dl water and ions. From measuring the adhesion strength with the Dl water absorption it was expected that the saturation of water and ions in the interface decreased the adhesion strength. The higher filler content of EMC should be necessary to inhibit the corrosion of aluminum electrode in microelectronic packages.

  • PDF

Measurement method of ground impedance for the grounding grid (접지그리드의 접지임피던스 측정 기법)

  • Lee, Bok-Hee;Choi, Jong-Hyuk;Choi, Young-Chul;Yoo, Jae-Duk;Beak, Young-Hwan;Kim, Dong-Seong;Shin, Hee-Kyung;Yoo, Yang-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1487_1488
    • /
    • 2009
  • In these days, the common grounding systems are adapted in most large structures. In order to evaluate the performance of grounding system, it is needed to measure ground impedance. Measuring methods of ground impedance for a large scale grounding systems have not been yet presented in detail. In this paper, we analyze earth mutual resistance and mutual coupling of $15{\times}15m$ grounding grid in different arrangements of auxiliary electrode. As a results, the auxiliary electrodes are installed where the error rate due to earth mutual resistance is less than 5%. Also, the potential lead is installed at obtuse angle from the current lead and the overlapped length between potential lead and grounding grid are minimized.

  • PDF

Optimization of Measuring Cardiac Output by Both Hands Electrode Impedance Method (양손 전극의 임피던스법을 이용한 심박출량 측정의 최적화)

  • Jung, Sang-O;Sim, Myeong-Heon;Jung, Woon-Mo;Kim, Min-Yong;Yoon, Chan-Sol;Yoon, Hyung-Ro
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.9
    • /
    • pp.1770-1776
    • /
    • 2011
  • In this study, a new method that can estimate ICG data from a subject's both hands to measure Cardiac Output under convenient sensor environment. With this aim, a grip-type electrode was implemented to measure ICG. To improve the accuracy of measurement, the regression equation was extracted using multiple bio-parameters and our result was compared with the thoracic ICG equipment(Physio Flow$^{(R)}$, PF104D, Manatec Biomedical, France), which is being used in clinics. The subjects consist of 26 men and 4 women(age in $22.0{\pm}3.32$). They are no cardiac disease. Parameters available for regression model were used gender, BMI, MBP, LVET, dZ/dt(max), distance between the measured electrodes, body impedance, and PTT. As a result of analyzing the ICG measurement value on thorax and both hands, the correlation with stroke volume, heart rate, and cardiac output was $R^2$=0.853, $R^2$=0.958 and $R^2$=0.899, respectively.

Electrochemical Property of Positive Active Material $LiMnO_2$ (정극 활물질 $LiMnO_2$의 전기 화학적 특성)

  • Wee, Sung-Dong;Kim, Jong-Uk;Kim, Min-Sung;Gu, Hal-Bon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.803-806
    • /
    • 2003
  • The impedance of the positive active material $LiMnO_2$ is measured by the changeable trend following the time. The charge capacities of single cell and each cells of four made with thin film prepared in the dry box are measured after measuring the impedance with the interval of 0, 24, 48 and 72 hours. In result, the impedance through the delaying time is not enhanced continuously as result of the time. The variation of capacity enhanced is not watched as the result of the delaying time that all together of the positive thin film and the reference is soaked in the solution of electrolyte of 1M PC $LiClO_4$. But it can be known to increase the discharge capacities as that the impeditive value is decrease.

  • PDF

Construction of the Electrochemical Impedance Measurement System Using Fourier Transform (푸리에 변환을 이용한 전기화학적 임피던스 측정 시스템 제작)

  • Hwang, Eui-Jin;Oh, Sang-Hyub
    • Journal of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.713-719
    • /
    • 1991
  • Electrochemical impedance measurement system using Fourier transform was constructed in the range of the frequencies up to 100 kHz. This system consists of pseudo-random noise generator, specially designed potentiostat, fast data acquisition system, system controller, and computer interface. The performance of the constructed system was found to be almost same as the commercially available system using lock-in amplifier. Measuring time was significantly reduced because the minimum time for the measurement depended on one cycle of the lowest frequency used. It would be possible to study time-varying electrochemical impedance systems such as the initial stages of corrosion processes using this system.

  • PDF

Enhanced Fault Location Algorithm for Short Faults of Transmission Line (1회선 송전선로 단락사고의 개선된 고장점 표정기법)

  • Lee, Kyung-Min;Park, Chul-Won
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.955-961
    • /
    • 2016
  • Fault location estimation is an important element for rapid recovery of power system when fault occur in transmission line. In order to calculate line impedance, most of fault location algorithm uses by measuring relaying waveform using DFT. So if there is a calculation error due to the influence of phasor by DC offset component, due to large vibration by line impedance computation, abnormal and non-operation of fault locator can be issue. It is very important to implement the robust fault location algorithm that is not affected by DC offset component. This paper describes an enhanced fault location algorithm based on the DC offset elimination filter to minimize the effects of DC offset on a long transmission line. The proposed DC offset elimination filter has not need any erstwhile information. The phase angle delay of the proposed DC offset filter did not occurred and the gain error was not found. The enhanced fault location algorithm uses DFT filter as well as the proposed DC offset filter. The behavior of the proposed fault location algorithm using off-line simulation has been verified by data about several fault conditions generated by the ATP simulation program.