• Title/Summary/Keyword: measurement system

Search Result 14,559, Processing Time 0.036 seconds

Image-based structural dynamic displacement measurement using different multi-object tracking algorithms

  • Ye, X.W.;Dong, C.Z.;Liu, T.
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.935-956
    • /
    • 2016
  • With the help of advanced image acquisition and processing technology, the vision-based measurement methods have been broadly applied to implement the structural monitoring and condition identification of civil engineering structures. Many noncontact approaches enabled by different digital image processing algorithms are developed to overcome the problems in conventional structural dynamic displacement measurement. This paper presents three kinds of image processing algorithms for structural dynamic displacement measurement, i.e., the grayscale pattern matching (GPM) algorithm, the color pattern matching (CPM) algorithm, and the mean shift tracking (MST) algorithm. A vision-based system programmed with the three image processing algorithms is developed for multi-point structural dynamic displacement measurement. The dynamic displacement time histories of multiple vision points are simultaneously measured by the vision-based system and the magnetostrictive displacement sensor (MDS) during the laboratory shaking table tests of a three-story steel frame model. The comparative analysis results indicate that the developed vision-based system exhibits excellent performance in structural dynamic displacement measurement by use of the three different image processing algorithms. The field application experiments are also carried out on an arch bridge for the measurement of displacement influence lines during the loading tests to validate the effectiveness of the vision-based system.

A study on the establishment of an MES system that converges design, processing, and measurement during cutting (절삭가공 시 설계, 가공, 측정을 융합한 MES 시스템 구축에 관한 연구)

  • Park, Hae-Woong;Lee, Seung-Wook;Han, Heui-Bong;Yun, Jae-Woong;Choi, Kye-Kwang;Han, Seong-Ryeol;Kim, Kyung-A;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.15 no.2
    • /
    • pp.42-48
    • /
    • 2021
  • In this paper, when manufacturing large/multi-mold parts (more than 30 core parts),A mold manufacturing (tolerance) management system was established through design-processing linkage.The mold manufacturing (tolerance) management system is a design-based measurement shape/measurement position determination system, M/C processing-linked measurement drive system,It is composed of four parts: CAD-linked measurement result analysis system and manager mold part quality management system.In addition, the constructed system was applied to the field and the effect of system construction was evaluated by comparing it with the existing process.As a result of the evaluation, the measurement precision is within 0.02mm, and the time it takes to measure after the end of processing is shorter than that of the existing process.(12 hours → 2 hours) It was shortened to 16.7%.In addition, it was confirmed that the time required for reprocessing after measurement was reduced by 25% (4 hours → 1 hour) compared to the existing process.

Development of a 3D Roughness Measurement System of Rock Joint Using Laser Type Displacement Meter (레이저 변위계를 이용한 암석 절리면의 3차원 거칠기 측정기 개발)

  • 배기윤;이정인
    • Tunnel and Underground Space
    • /
    • v.12 no.4
    • /
    • pp.268-276
    • /
    • 2002
  • In this study, a 3D coordinate measurement system equipped with a laser displacement meter for digitizing rock joint surface was established and the digitized data were used to calculate several roughness parameters. The parameters used in this study were micro avenge inclination $angle(i_{ave})$, average slope of joint $asperity(SL_{ ave})$, root mean square of $i-angle(i_{rms})$, standard deviation of height(SDH), standard deviation of $i-angle(SD_i)$, roughness profile $index(R_P)$, and fractal dimension(D). The relationships between the roughness parameters based on the digitzation of the surface profile were analyzed. Since the measured value varied according to the degree of reflection and the variation of colors at the measuring point, rock joint surface was painted in white to minimize the influence of the surface conditions. The comparison of the measured values and roughness parameters before and after painting revealed the better consequence from measurement on the painted surfaces. Also, effect of measuring interval was studied. As measured interval was increased, roughness parameters were exponentially decreased. The incremental sequence of degree of decrease was $SDH\; i_{ave},\; i_{rms},\; SD_i,\;and\; R_ p-1$. As a result of comparison of parameters from pin-type measurement system and laser type measurement system, all value of parameters were higher when laser-type measurement system was used, except SDH.

Development of an Uplift Measurement System for Overhead Contact Wire using High Speed Camera (고속카메라를 이용한 전차선 압상량 검측 시스템 개발)

  • Park, Young;Cho, Yong-Hyeon;Lee, Ki-Won;Kim, Hyung-Jun;Kim, In-Chol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.864-869
    • /
    • 2009
  • The measurement of contact wire uplift in electric railways is one of the most important test parameters to accepting the maximum permitted speed of new electric vehicles and pantographs. The contact wire uplift can be measured over short periods when the pantograph passes monitoring stations. In this paper, a high-speed image measurement system and its image processing method are being developed to evaluate dynamic uplift of overhead contact wires caused by pantograph contact forces of Korea Tilting Train eXpress (TTX) and Korea Train eXpress (KTX). The image measurement system was implemented utilizing a high-speed CMOS (Complementary Metal Oxide Semiconductor) camera and gigabit ethernet LAN. Unlike previous systems, the uplift measurement system using high speed camera is installed on the side of the rail, making maintenance convenient. On-field verification of the uplift measurement system for overhead contact wire using high speed camera was conducted by measuring uplift of the TTX followed by operation speeds at the Honam conventional line and high-speed railway line. The proposed high-speed image measurement system to evaluate dynamic uplift of overhead contact wires shows promising on-field applications for high speed trains such as KTX and TTX.

Modeling and Measurement of Thermal Errors for Machining Center using On-Machine Measurement System (기상계측 시스템을 이용한 머시닝센터의 열변형 오차 모델링 및 오차측정)

  • 이재종;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.1
    • /
    • pp.120-128
    • /
    • 2000
  • One of the major limitations of productivity and quality in metal cutting is the machining accuracy of machine tools. The machining accuracy is affected by geometric errors, thermally-induced errors, and the deterioration of the machine tools. Geometric and thermal errors of machine tools should be measured and compensated to manufacture high quality products. In metal cutting, the machining accuracy is more affected by thermal errors than by geometric errors. This paper models of the thermal errors for error analysis and develops on-the-machine measurement system by which the volumetric error are measured and compensated. The thermal error is modeled by means of angularity errors of a column and thermal drift error of the spindle unit which are measured by the touch probe unit with a star type styluses and a designed spherical ball artifact (SBA). Experiments, performed with the developed measurement system, show that the system provides a high measuring accuracy, with repeatability of $\pm$2${\mu}{\textrm}{m}$ in X, Y and Z directions. It is believed that the developed measurement system can be also applied to the machine tools with CNC controller. In addition, machining accuracy and product quality can be improved by using the developed measurement system when the spherical ball artifact is mounted on the modular fixture.

  • PDF

Development of Management System for Measurement and Characteristic analysis, Evaluation of Environmental Noise (인터넷 통신이용 실시간 환경소음 측정 및 특성분석, 평가ㆍ관리 시스템 개발)

  • 유동준;이상권
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.515-520
    • /
    • 2003
  • In these days, the civil appeal and dispute about environmental noise grows larger every year. But there are not suitable systems for measurement and management of environmental noise. This paper proposes environmental noise measurement, characteristic analysis and evaluation, management system using Internet. We can measure and manage the environmental noise also, analyze characteristics of noise by the environmental noise management system using Internet.

  • PDF

Implementation of Temperature Measurement System Using Fuzzy Theory (Fuzzy 이론을 이용한 디지털 온도계측 시스템의 구현)

  • Kang, Moon-Sung;Hong, Sung-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1997.07b
    • /
    • pp.510-512
    • /
    • 1997
  • Measurement errors in a temperature measurement system are mainly due to the consisting elements' accuracies and the circuit parameters' changes following the environment variations such as temperature. Further, system's non-linearity makes the measurement accuracy worse, and accordingly a linearization method should be considered to avoid this worsening. In this study, an error-correction method and a linearization method are proposed and a system utilizing these methods is realized.

  • PDF

Abdominal Wall Motion-Based Respiration Rate Measurement using An Ultrasonic Proximity Sensor (복부 움직임에 따른 초음파 근접센서를 이용한 호흡측정에 관한 연구)

  • Min, Se-Dong;Kim, Jin-Kwon;Shin, Hang-Sik;Yun, Young-Hyun;Lee, Chung-Keun;Lee, Jeong-Whan;Lee, Myoung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.10
    • /
    • pp.2071-2078
    • /
    • 2009
  • In this paper, we proposed a non-contact respiration measurement system with ultrasonic proximity sensor. Ultrasonic proximity sensor approach of respiration measurement which respiration signatures and rates can be derived in real-time for long-term monitoring is presented. 240 kHz ultrasonic sensor has been applied for the proposed measurement system. The time of flight of sound wave between the transmitted signal and received signal have been used for a respiration measurement from abdominal area. Respiration rates measured with the ultrasonic proximity sensor were compared with those measured with standard techniques on 5 human subjects. Accurate measurement of respiration rate is shown from the 50 cm measurement distance. The data from the method comparison study is used to confirm the performance of the proposed measurement system. The current version of respiratory rate detection system using ultrasonic can successfully measure respiration rate. The proposed measurement method could be used for monitoring unconscious persons from a relatively close range, avoiding the need to apply electrodes or other sensors in the correct position and to wire the subject to the monitor. Monitoring respiration using ultrasonic sensor offers a promising possibility of non-contact measurement of respiration rates. Especially, this technology offers a potentially inexpensive implementation that could extend applications to consumer home-healthcare and mobile-healthcare products. Further advances in the sensor design, system design and signal processing can increase the range of the measurement and quality of the rate-finding for broadening the potential application areas of this technology.

Moving Distance Measurement System using a Accelerometer Sensor (가속도 센서를 이용한 이동거리 측정 시스템)

  • Park, Seung-Hun;Lee, Jung-Hoon;Kim, Sung-Woo;Lim, Jae-Hwan;Ryu, Jee-Youl
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.6
    • /
    • pp.1300-1305
    • /
    • 2012
  • In this research, we propose a momentum measurement system using the accelerometer sensor, MCU, and Bluetooth to measure the exact momentum. The proposed system can figure out information for the real time travel distance. We performed various experiments, and analyzed the results using the proposed momentum measurement system. In the simulation experiments, we compared the reliability and accuracy for the existing momentum measurement systems from the analyzed results. The proposed system showed travel distance error of less than 8% as compared to the existing system with the error of approximately 13%. We expect that the proposed system apply to the commercial products.

Development of Measurement System for Industrial Transportable Gamma Ray CT (이동 형 산업용 단층측정 장치를 위한 감마선 검출시스템 개발)

  • Kim, Jong-Bum;Jung, Sung-Hee;Moon, Jin-Ho
    • Journal of Radiation Industry
    • /
    • v.6 no.3
    • /
    • pp.231-237
    • /
    • 2012
  • This paper introduces a gamma-ray measurement system for a transportable tomography which is applicable for an industrial process diagnosis. The gamma-ray measurement system consists of pulse mode operating 72 channel CsI detectors, main AMP-pulse shaper, single channel analyzer, counter and control PC. The CsI crystal is coupled with a PIN diode which is connected to an amplifier and pulse shaper. For a compact design, the amplifier and pulse shaping circuit are included in a single package. 36 sets of CsI detectors are connected to a multi-channel counter through single channel analyzers. A computer controls and collects data from two multi-channel counters. This configuration results in 72 channel counting system in total. The CT rotator and radiation measurement system are controlled by a PC with LabVIEW program. Tomographic data were measured for a phantom by the measurement system and transportable gamma-ray CT. From the experimental data image reconstructions were performed by ML-EM algorithm. The result showed that the CsI detector system can be a suitable component for transportable gamma-ray CT system.