• Title/Summary/Keyword: measurement equipment

Search Result 1,685, Processing Time 0.033 seconds

The study of thermal change by chemoport in radiofrequency hyperthermia (고주파 온열치료시 케모포트의 열적 변화 연구)

  • Lee, seung hoon;Lee, sun young;Gim, yang soo;Kwak, Keun tak;Yang, myung sik;Cha, seok yong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.27 no.2
    • /
    • pp.97-106
    • /
    • 2015
  • Purpose : This study evaluate the thermal changes caused by use of the chemoport for drug administration and blood sampling during radiofrequency hyperthermia. Materials and Methods : 20cm size of the electrode radio frequency hyperthermia (EHY-2000, Oncotherm KFT, Hungary) was used. The materials of the chemoport in our hospital from currently being used therapy are plastics, metal-containing epoxy and titanium that were made of the diameter 20 cm, height 20 cm insertion of the self-made cylindrical Agar phantom to measure the temperature. Thermoscope(TM-100, Oncotherm Kft, Hungary) and Sim4Life (Ver2.0, Zurich, Switzerland) was compared to the actual measured temperature. Each of the electrode measurement position is the central axis and the central axis side 1.5 cm, 0 cm(surface), 0.5 cm, 1.8 cm, 2.8 cm in depth was respectively measured. The measured temperature is $24.5{\sim}25.5^{\circ}C$, humidity is 30% ~ 32%. In five-minute intervals to measure the output power of 100W, 60 min. Results : In the electrode central axis 2.8 cm depth, the maximum temperature of the case with the unused of the chemoport, plastic, epoxy and titanium were respectively $39.51^{\circ}C$, $39.11^{\circ}C$, $38.81^{\circ}C$, $40.64^{\circ}C$, simulated experimental data were $42.20^{\circ}C$, $41.50^{\circ}C$, $40.70^{\circ}C$, $42.50^{\circ}C$. And in the central axis electrode side 1.5 cm depth 2.8 cm, mesured data were $39.37^{\circ}C$, $39.32^{\circ}C$, $39.20^{\circ}C$, $39.46^{\circ}C$, the simulated experimental data were $42.00^{\circ}C$, $41.80^{\circ}C$, $41.20^{\circ}C$, $42.30^{\circ}C$. Conclusion : The thermal variations were caused by radiofrequency electromagnetic field surrounding the chemoport showed lower than in the case of unused in non-conductive plastic material and epoxy material, the titanum chemoport that made of conductor materials showed a slight differences. This is due to the metal contents in the chemoport and the geometry of the chemoport. And because it uses a low radio frequency bandwidth of the used equipment. That is, although use of the chemoport in this study do not significantly affect the surrounding tissue. That is, because the thermal change is insignificant, it is suggested that the hazard of the chemoport used in this study doesn't need to be considered.

  • PDF

Development of Adjustable Head holder Couch in H&N Cancer Radiation Therapy (두경부암 방사선 치료 시 Set-Up 조정 Head Holder 장치의 개발)

  • Shim, JaeGoo;Song, KiWon;Kim, JinMan;Park, MyoungHwan
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.26 no.1
    • /
    • pp.43-50
    • /
    • 2014
  • In case of all patients who receive radiation therapy, a treatment plan is established and all steps of treatment are planned in the same geometrical condition. In case of head and neck cancer patients who undergo simulated treatment through computed tomography (CT), patients are fixed onto a table for planning, but laid on the top of the treatment table in the radiation therapy room. This study excogitated and fabricated an adjustable holder for head and neck cancer patients to fix patient's position and geometrical discrepancies when performing radiation therapy on head and neck cancer patients, and compared the error before and after adjusting the position of patients due to difference in weight to evaluate the correlation between patients' weight and range of error. Computed tomography system(High Advantage, GE, USA) is used for phantom to maintain the supine position to acquire the images of the therapy site for IMRT. IMRT 4MV X-rays was used by applying the LINAC(21EX, Varian, U.S.A). Treatment planning system (Pinnacle, ver. 9.1h, Philips, Madison, USA) was used. The setup accuracy was compared with each measurement was repeated five times for each weight (0, 15, and 30Kg) and CBCT was performed 30 times to find the mean and standard deviation of errors before and after the adjustment of each weight. SPSS ver.19.0(SPSS Inc., Chicago, IL,USA) statistics program was used to perform the Wilcoxon Rank test for significance evaluation and the Spearman analysis was used as the tool to analyze the significance evaluation of the correlation of weight. As a result of measuring the error values from CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.4{\pm}0.8mm$, $0.8{\pm}0.4mm$, 0 for 0Kg before the adjustment. In 15Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.2{\pm}0.8mm$, $1.2{\pm}0.4mm$, $2.0{\pm}0.4mm$. After adjusting position was X,Y,Z axis was $0.2{\pm}0.4mm$, $0.4{\pm}0.5mm$, $0.4{\pm}0.5mm$. In 30Kg CBCT before and after adjusting the position due to the weight difference, X,Y,Z axis was $0.8{\pm}0.4mm$, $2.4{\pm}0.5mm$, $4.4{\pm}0.8mm$. After adjusting position was X,Y,Z axis was $0.6{\pm}0.5mm$, $1.0{\pm}0mm$, $0.6{\pm}0.5mm$. When the holder for the head and neck cancer was used to adjust the ab.0ove error value, the error values from CBCT were $0.2{\pm}0.8mm$ for the X axis, $0.40{\pm}0.54mm$ for Y axis, and 0 for Z axis. As a result of statistically analyzing each value before and after the adjustment the value was significant with p<0.034 at the Z axis with 15Kg of weight and with p<0.038 and p<0.041 at the Y and Z axes respectively with 30Kg of weight. There was a significant difference with p<0.008 when the analysis was performed through Kruscal-Wallis in terms of the difference in the adjusted values of the three weight groups. As it could reduce the errors, patients' reproduction could be improved for more precise and accurate radiation therapy. Development of an adjustable device for head and neck cancer patients is significant because it improves the reproduction of existing equipment by reducing the errors in patients' position.

Evaluation of Metal Volume and Proton Dose Distribution Using MVCT for Head and Neck Proton Treatment Plan (두경부 양성자 치료계획 시 MVCT를 이용한 Metal Volume 평가 및 양성자 선량분포 평가)

  • Seo, Sung Gook;Kwon, Dong Yeol;Park, Se Joon;Park, Yong Chul;Choi, Byung Ki
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.31 no.1
    • /
    • pp.25-32
    • /
    • 2019
  • Purpose: The size, shape, and volume of prosthetic appliance depend on the metal artifacts resulting from dental implant during head and neck treatment with radiation. This reduced the accuracy of contouring targets and surrounding normal tissues in radiation treatment plan. Therefore, the purpose of this study is to obtain the images of metal representing the size of tooth through MVCT, SMART-MAR CT and KVCT, evaluate the volumes, apply them into the proton therapy plan, and analyze the difference of dose distribution. Materials and Methods : Metal A ($0.5{\times}0.5{\times}0.5cm$), Metal B ($1{\times}1{\times}1cm$), and Metal C ($1{\times}2{\times}1cm$) similar in size to inlay, crown, and bridge taking the treatments used at the dentist's into account were made with Cerrobend ($9.64g/cm^3$). Metal was placed into the In House Head & Neck Phantom and by using CT Simulator (Discovery CT 590RT, GE, USA) the images of KVCT and SMART-MAR were obtained with slice thickness 1.25 mm. The images of MVCT were obtained in the same way with $RADIXACT^{(R)}$ Series (Accuracy $Precision^{(R)}$, USA). The images of metal obtained through MVCT, SMART-MAR CT, and KVCT were compared in both size of axis X, Y, and Z and volume based on the Autocontour Thresholds Raw Values from the computerized treatment planning equipment Pinnacle (Ver 9.10, Philips, Palo Alto, USA). The proton treatment plan (Ray station 5.1, RaySearch, USA) was set by fusing the contour of metal B ($1{\times}1{\times}1cm$) obtained from the above experiment by each CT into KVCT in order to compare the difference of dose distribution. Result: Referencing the actual sizes, it was appeared: Metal A (MVCT: 1.0 times, SMART-MAR CT: 1.84 times, and KVCT: 1.92 times), Metal B (MVCT: 1.02 times, SMART-MAR CT: 1.47 times, and KVCT: 1.82 times), and Metal C (MVCT: 1.0 times, SMART-MAR CT: 1.46 times, and KVCT: 1.66 times). MVCT was measured most similarly to the actual metal volume. As a result of measurement by applying the volume of metal B into proton treatment plan, the dose of $D_{99%}$ volume was measured as: MVCT: 3094 CcGE, SMART-MAR CT: 2902 CcGE, and KVCT: 2880 CcGE, against the reference 3082 CcGE Conclusion: Overall volume and axes X and Z were most identical to the actual sizes in MVCT and axis Y, which is in the superior-Inferior direction, was regular in length without differences in CT. The best dose distribution was shown in MVCT having similar size, shape, and volume of metal when treating head and neck protons. Thus it is thought that it would be very useful if the contour of prosthetic appliance using MVCT is applied into KVCT for proton treatment plan.

Evaluation of the Usefulness of Exactrac in Image-guided Radiation Therapy for Head and Neck Cancer (두경부암의 영상유도방사선치료에서 ExacTrac의 유용성 평가)

  • Baek, Min Gyu;Kim, Min Woo;Ha, Se Min;Chae, Jong Pyo;Jo, Guang Sub;Lee, Sang Bong
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.32
    • /
    • pp.7-15
    • /
    • 2020
  • Purpose: In modern radiotherapy technology, several methods of image guided radiation therapy (IGRT) are used to deliver accurate doses to tumor target locations and normal organs, including CBCT (Cone Beam Computed Tomography) and other devices, ExacTrac System, other than CBCT equipped with linear accelerators. In previous studies comparing the two systems, positional errors were analysed rearwards using Offline-view or evaluated only with a Yaw rotation with the X, Y, and Z axes. In this study, when using CBCT and ExacTrac to perform 6 Degree of the Freedom(DoF) Online IGRT in a treatment center with two equipment, the difference between the set-up calibration values seen in each system, the time taken for patient set-up, and the radiation usefulness of the imaging device is evaluated. Materials and Methods: In order to evaluate the difference between mobile calibrations and exposure radiation dose, the glass dosimetry and Rando Phantom were used for 11 cancer patients with head circumference from March to October 2017 in order to assess the difference between mobile calibrations and the time taken from Set-up to shortly before IGRT. CBCT and ExacTrac System were used for IGRT of all patients. An average of 10 CBCT and ExacTrac images were obtained per patient during the total treatment period, and the difference in 6D Online Automation values between the two systems was calculated within the ROI setting. In this case, the area of interest designation in the image obtained from CBCT was fixed to the same anatomical structure as the image obtained through ExacTrac. The difference in positional values for the six axes (SI, AP, LR; Rotation group: Pitch, Roll, Rtn) between the two systems, the total time taken from patient set-up to just before IGRT, and exposure dose were measured and compared respectively with the RandoPhantom. Results: the set-up error in the phantom and patient was less than 1mm in the translation group and less than 1.5° in the rotation group, and the RMS values of all axes except the Rtn value were less than 1mm and 1°. The time taken to correct the set-up error in each system was an average of 256±47.6sec for IGRT using CBCT and 84±3.5sec for ExacTrac, respectively. Radiation exposure dose by IGRT per treatment was measured at 37 times higher than ExacTrac in CBCT and ExacTrac at 2.468mGy and 0.066mGy at Oral Mucosa among the 7 measurement locations in the head and neck area. Conclusion: Through 6D online automatic positioning between the CBCT and ExacTrac systems, the set-up error was found to be less than 1mm, 1.02°, including the patient's movement (random error), as well as the systematic error of the two systems. This error range is considered to be reasonable when considering that the PTV Margin is 3mm during the head and neck IMRT treatment in the present study. However, considering the changes in target and risk organs due to changes in patient weight during the treatment period, it is considered to be appropriately used in combination with CBCT.

Comparison of One-day and Two-day Protocol of $^{11}C$-Acetate and $^{18}F$-FDG Scan in Hepatoma (간암환자에 있어서 $^{11}C$-Acetate와 $^{18}F$-FDG PET/CT 검사의 당일 검사법과 양일 검사법의 비교)

  • Kang, Sin-Chang;Park, Hoon-Hee;Kim, Jung-Yul;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.3-8
    • /
    • 2010
  • Purpose: $^{11}C$-Acetate PET/CT is useful in detecting lesions that are related to livers in the human body and leads to a sensitivity of 87.3%. On the other hand, $^{18}F$-FDG PET/CT has a sensitivity of 47.3% and it has been reported that if both $^{18}F$-FDG and $^{11}C$-Acetate PET/CT are carried out together, their cumulative sensitivity is around 100%. However, the normal intake of the pancreas and the spleen in $^{11}C$-Acetate PET/CT can influence the $^{18}F$-FDG PET/CT leading to an inaccurate diagnosis. This research was aimed at the verification of the usefulness of how much influence these two radioactive medical supplies can cause on the medical images through comparative analysis between the one-day and two-day protocol. Materials and Methods: This research was carried out based on 46 patients who were diagnosed with liver cancer and have gone through the PET/CT (35 male, 11 female participants, average age: $54{\pm}10.6$ years, age range: 29-69 years). The equipment used for this test was the Biograph TruePoint40 PET/CT (Siemens Medical Systems, USA) and 21 participants who went through the one-day protocol test were first given the $^{11}C$-Acetate PET/CT and the $^{18}F$-FDG PET/CT, the latter exactly after one hour. The other 25 participants who went through the two-day protocol test were given the $^{11}C$-Acetate PET/CT on the first day and the $^{18}F$-FDG PET/CT on the next day. These two groups were then graded comparatively by assigning identical areas of interest of the pancreas and the spleen in the $^{18}F$-FDG images and by measuring the Standard Uptake Value (SUV). SPSS Ver.17 (SPSS Inc., USA) was used for statistical analysis, where statistical significance was found through the unpaired t-test. Results: After analyzing the participants' medical images from each of the two different protocol types, the average${\pm}$standard deviation of the SUV of the pancreas carried out under the two-day protocol were as follows: head $1.62{\pm}0.32$ g/mL, body $1.57{\pm}0.37$ g/mL, tail $1.49{\pm}0.33$ g/mL and the spleen $1.53{\pm}0.28$ g/mL. Whereas, the results for participants carried out under the one-day protocol were as follows: head $1.65{\pm}0.35$ g/mL, body $1.58{\pm}0.27$ g/mL, tail $1.49{\pm}0.28$ g/mL and the spleen $1.66{\pm}0.29$ g/mL. Conclusion: It was found that no statistical significant difference existed between the one-day and two-day protocol SUV in the pancreas and the spleen (p<0.05), and nothing which could be misconceived as false positive were found from the PET/CT medical image analysis. From this research, it was also found that no overestimation of the SUV occurred from the influence of $^{11}C$-Acetate on the $^{18}F$-FDG medical images where those two tests were carried out for one day. This result was supported by the statistical significance of the SUV of measurement. If $^{11}C$-Acetate becomes commercialized in the future, the diagnostic ability of liver diseases can be improved by $^{18}F$-FDG and one-day protocol. It is from this result where tests can be accomplished in one day without the interference phenomenon of the two radioactive medical supplies and furthermore, could reduce the waiting time improving customer satisfaction.

  • PDF