• Title/Summary/Keyword: measurement cost

Search Result 1,646, Processing Time 0.037 seconds

Measurement of Tool Wear using Machine Vision in Flat End-mill (머신비젼을 이용한 평 엔드밀 공구의 마모측정)

  • Kim, Tae-Young;Kim, Eung-Nam;Kim, Min-Ho
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.1
    • /
    • pp.53-59
    • /
    • 2011
  • End milling is available for machining the various shape of products and has been widely applied in many manufacturing industries. The quality of products depends on a machine tool performance and machining conditions. Recognition characteristics of the cutting condition is becoming a critical requirement for improving the utilization and flexibility of present-day CNC machine tools. The measurement of tool wear would be performed by coordinate-measuring machine(CMM). However, the usage of CMM requires much time and cost. In order to overcome the difficulties, on-line measurement(OLM) system was applied for a tool wear measurement. This study shows a reliable technique for the reduction of machining error components by developing a system using a CCD camera and machine vision to be able to precisely measure the size of tool wear in flat end milling for CNC machining. The CCD camera and machine vision attached to a CNC machine can determine tool wear quickly and easily.

Deterministic Bipolar Compressed Sensing Matrices from Binary Sequence Family

  • Lu, Cunbo;Chen, Wengu;Xu, Haibo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.6
    • /
    • pp.2497-2517
    • /
    • 2020
  • For compressed sensing (CS) applications, it is significant to construct deterministic measurement matrices with good practical features, including good sensing performance, low memory cost, low computational complexity and easy hardware implementation. In this paper, a deterministic construction method of bipolar measurement matrices is presented based on binary sequence family (BSF). This method is of interest to be applied for sparse signal restore and image block CS. Coherence is an important tool to describe and compare the performance of various sensing matrices. Lower coherence implies higher reconstruction accuracy. The coherence of proposed measurement matrices is analyzed and derived to be smaller than the corresponding Gaussian and Bernoulli random matrices. Simulation experiments show that the proposed matrices outperform the corresponding Gaussian, Bernoulli, binary and chaotic bipolar matrices in reconstruction accuracy. Meanwhile, the proposed matrices can reduce the reconstruction time compared with their Gaussian counterpart. Moreover, the proposed matrices are very efficient for sensing performance, memory, complexity and hardware realization, which is beneficial to practical CS.

A Study on Real-time Quality Evaluation Method of Bibliographic Database (실시간 서지데이터베이스 평가방법에 관한 연구)

  • 노경란;권오진;유현종;문영호;홍성화
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.4
    • /
    • pp.76-84
    • /
    • 2002
  • The conventional database evaluation method is carried out by the way in which the person in charge of each specialty database(DB manager) composes the evaluation sheets for corretionㆍrevision on the already-constructed database in a manual method and carries out the measurement and re-education of DB workers based upon it. As a result, that way consumes much time on career information and measurement works about DB workers, causing low time and cost efficiency and lack of systematic management of DB workers, resulting in becoming the hindrance factor of databases quality improvement. This research provides on-line, red-time results of measurements about the efficiency of DB production and DB workers by combining the static measurement with dynamic measurement by DB manager, both of which utilize the System. Therefore, the DB manager can contribute to the improvement of DB quality by determining the continuation of DB production by DB workers or carrying out the re-education of DB workers without being affected by time or spacial constraints.

  • PDF

A Study on the Methodology for Determining Dynamic Loadings of Automotive Suspension System Using Measurement and Modeling

  • 김호용;이재곤;박용국
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.8
    • /
    • pp.262-271
    • /
    • 1999
  • To design suspension system and estimate its durability , the loading history of each suspension part exposed to various operation conditions should be known from either measurement or computations. Based on these results, stress analysis is carried out to obtain the optimal shape and to reduce the production cost through the proper selection of manufacturing process. In this paper, first the measurement of 3-directional accelerations of wheel center using an accelerometer are undertaken from a vehicle running on Belgian road. Then the data measured from experiments are pre-processed with filtering . Based on the pre-processed data the methodology for determining the dynamic loading to each suspension part is developed by simply modeling the suspension system with ADAMS software. Eventually , it is expected that dynamic loadings can be used for the dynamic stress and fatigue analyses.

  • PDF

Development of Three Dimensional Scanner for Anthropometric Measurement (인체측정용 3차원 스캐너 제작)

  • Kim, Min-Hyo;Nam, Yun-Ja
    • Journal of the Ergonomics Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.77-88
    • /
    • 2001
  • A three dimensional body scanner for anthropomentric measurement has been developed. In this study, the slit laser beam projection method followed by digital image processing was used to provide accurate spatial data with the typical optical triangulation method to overcome the many difficulties in traditional in accurate and time-consuming tactic measurement method using rulers and gauges. Compared with other commercialized scanners. this system can obtain a relatively wide range of data at a much lower cost by the specially designed scanning process such as the simultaneous acquisition of vertical and horizontal body cross-section profiles.

  • PDF

The Design and Implementation of Mouse Activity Measurement System using Infrared Sensor

  • Kwak, Ho-Young;Huh, Jisoon;Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.12
    • /
    • pp.81-89
    • /
    • 2016
  • In this paper, we design and implement a mouse movement measurement system using an infrared sensor called MAMS (Mouse Activity Measurement System). Unlike existing systems, MAMS can measure movements between IREDs. MAMS is removable allowing convenient portability and is also low cost. MAMS automatically measures mouse activity during a pre-set time interval. Since the measured data can be easily stored in a computer system, it is much simpler and more efficient than the Ugo 47420 model. Moreover, MAMS can be used in medical and veterinary field to eliminate manual observations.

The Development of Power Measurement Circuit for Non-Linear Load (비선형 부하에 적용 가능한 전력 계측 회로의 개발)

  • Park, Jong-Chan;Kim, Byung-Jin;Kim, Soo-Gon;Jeon, Hee-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.79-82
    • /
    • 2002
  • Non-linear loads are the sources of power systems harmonics, and the power quality is influenced by harmonics, Recently, the requirements of power quality is important. For the power quality problems. it is very important that the development of power measurement circuit for non-linear load. In this paper, it is discoursed on that high speed sampling circuit and efficient power analysis algorithms. The sampling circuit is implemented using FPGA. Since the power measurement circuit system is composed by FPGA and efficient power algorithms. it is practicable application that accurate power measurement, stable protection relaying, and low cost system configuring.

  • PDF

Vibration-Robust Attitude and Heading Reference System Using Windowed Measurement Error Covariance

  • Kim, Jong-Myeong;Mok, Sung-Hoon;Leeghim, Henzeh;Lee, Chang-Yull
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.555-564
    • /
    • 2017
  • In this paper, a new technique for attitude and heading reference system (AHRS) using low-cost MEMS sensors of the gyroscope, accelerometer, and magnetometer is addressed particularly in vibration environments. The motion of MEMS sensors interact with the scale factor and cross-coupling errors to produce random errors by the harsh environment. A new adaptive attitude estimation algorithm based on the Kalman filter is developed to overcome these undesirable side effects by analyzing windowed measurement error covariance. The key idea is that performance degradation of accelerometers, for example, due to linear vibrations can be reduced by the proposed measurement error covariance analysis. The computed error covariance is utilized to the measurement covariance of Kalman filters adaptively. Finally, the proposed approach is verified by using numerical simulations and experiments in an acceleration phase and/or vibrating environments.

Experimental Results on Kinematic Calibration of Parallel Manipulator using 6 DOF Measurement Device (6자유도 측정 장치를 이용한 병렬 기구의 캘리브레이션 실험 결과)

  • Rauf Abdul;Pervez Aslam;Kim Hyun-Ho;Ryu Je-Ha
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.197-203
    • /
    • 2005
  • This paper presents kinematic calibration of parallel manipulators with partial pose measurements using a device that measures a rotation of the end-effector along with its position. The device contains an LVDT, a biaxial inclinometer, and a rotary sensor and facilitates automation of the measurement procedure. The device is designed in a modular fashion and links of different lengths can be used. The additional kinematic parameters required for the measurement device are discussed, kinematic relations are derived, and cost function is established to perform calibration with the proposed device. The study is performed for a six degree-of-freedom(DOF) fully parallel HexaSlide Mechanism(HSM). Experimental results show significant improvement in the accuracy of the HSM.

  • PDF

Development of Effective Measurement System for Micro Burrs (효율적인 마이크로 버 측정 시스템 개발)

  • Ko Sung-Lim;To Hoang-Minh
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.702-705
    • /
    • 2005
  • Burr is an undesirable projection as result of plastic deformation. Burr minimization and effective deburring process are required strongly to reduce the cost of the parts. In doing these efforts, the precise burr measurement must be provided for the efficient process. For this purpose the conoscopic holography sensors are selected before. However, it has been very difficult to measure micro burrs less than $10{\mu}m$ due to their tiny and sharp geometries as well as the effect of ambient vibration during scanning. A new micro burr measurement system using high precision. Conoprobe sensor and XY table can measure the micro burrs which is less than $10{\mu}m$. Experiments were carried out showing that micro burr around $10{\mu}m$ was successfully measured and analyzed.

  • PDF