
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, Jun. 2020                                         2497 
Copyright ⓒ 2020 KSII 

 
The research is supported by National Nature Science Foundation of China (Nos. 11871109, 61802428, 11675021), 
NSAF Joint Fund (No. U1830107) and Science Challenge Project (TZ2018001). 
 
http://doi.org/10.3837/tiis.2020.06.010                                                                                                                ISSN : 1976-7277 

Deterministic Bipolar Compressed Sensing 
Matrices from Binary Sequence Family 

 
Cunbo Lu1, Wengu Chen1* and Haibo Xu1 

1 Institute of Applied Physics and Computational Mathematics 
Beijing, 100088 - China 

[e-mail: 444180647@qq.com, chenwg@iapcm.ac.cn, xu_haibo@iapcm.ac.cn] 
*Corresponding author: Wengu Chen 

 
Received September 25, 2019; revised November 1, 2019; revised March 16, 2020; accepted April 1, 2020; 

published June 30, 2020 

 

Abstract 
 

For compressed sensing (CS) applications, it is significant to construct deterministic 
measurement matrices with good practical features, including good sensing performance, low 
memory cost, low computational complexity and easy hardware implementation. In this paper, 
a deterministic construction method of bipolar measurement matrices is presented based on 
binary sequence family (BSF). This method is of interest to be applied for sparse signal restore 
and image block CS. Coherence is an important tool to describe and compare the performance 
of various sensing matrices. Lower coherence implies higher reconstruction accuracy. The 
coherence of proposed measurement matrices is analyzed and derived to be smaller than the 
corresponding Gaussian and Bernoulli random matrices. Simulation experiments show that 
the proposed matrices outperform the corresponding Gaussian, Bernoulli, binary and chaotic 
bipolar matrices in reconstruction accuracy. Meanwhile, the proposed matrices can reduce the 
reconstruction time compared with their Gaussian counterpart. Moreover, the proposed 
matrices are very efficient for sensing performance, memory, complexity and hardware 
realization, which is beneficial to practical CS. 
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1. Introduction 

Different from Nyquist sampling theorem, compressed sensing (CS) is a new revolutionary 
signal sampling framework proposed by Candès, Romberg, Tao and Donoho in 2006 [1, 2]. It 
can improve the sampling efficiency by sampling sparse signals at a rate far lower than the 
Nyquist rate. Its core is to exploit measurement matrix to project an original high-dimensional 
sparse signal onto a lower-dimensional space. By utilizing the sparsity property, the original 
high-dimensional sparse signal can be reconstructed accurately from the lower-dimensional 
measurement vector with  high probability by solving an optimization problem. The new idea 
of CS has caused the extensive attention of academic circles and has been applied to various 
research areas, such as signal processing, big data, wireless network, image encryption and 
computed tomography.  

The process of CS can be viewed as having two stages: data sampling and signal recovery.  
In CS theory, the design of the measurement matrix serves an important role. In data sampling, 
if the reconstruction accuracy remains unchanged, a better measurement matrix can result in a 
smaller number of measurements. For signal recovery,  if the number of measurements remain 
unchanged, a better measurement matrix can result in a higher reconstruction accuracy.  The 
property of measurement matrix decides whether or not all the significant information of 
original signal is captured and preserved by the projected measurements during the 
dimensionality reduction. Restricted Isometry Property (RIP) is an important criteria proposed 
by Candes and Tao [3]. As long as the measurement matrix satisfies RIP, the original signal 
can be reconstructed accurately from the lower-dimensional measurement vector with high 
probability. Coherence is another important criteria to construct CS matrices. Bourgain et al. 
[4] related the coherence and the RIP: low coherence implies the RIP. RIP [5-9] and coherence 
[10-22] are both important tools to analyze the property of measurement matrices. In this 
paper, coherence will be adopted to analyze the property of proposed measurement matrices, 
because it is computed more easily.  

Existing measurement matrices can be classified into two categories: random measurement 
matrices and deterministic measurement matrices. In scientific research, the most widely used 
measurement matrices are random matrices, such as Gaussian or Bernoulli ones. However, in 
random matrices, the value of every element is independent and identically distributed (i.i.d.) 
from certain probability distribution, where randomness exists. In the generation process of a 
random matrix, all elements should be stored and the process is repeated when a new 
realization is needed, which would cost lots of storage resources. The generation of random 
number has very high hardware requirement, thus limiting the practical CS applications. These 
deficiencies can be overcome by deterministic measurement matrices, where all elements are 
precomputed and deterministic. Compared with the random matrices, the deterministic 
matrices can get rid of the randomness. In the generation process of a deterministic matrix, the 
computation of every element  may require many complex mathematical operations, but  all 
elements can be precomputed and generated on the fly only once, thus providing storage 
efficiency. In recent years, many researchers have utilizing some techniques to construct 
deterministic measurement matrices. In [10], Li and Ge constructed deterministic 
measurement matrices based on near orthogonal systems. In [11], Zeng et al introduced a 
deterministic construction named TSCM, which combines an orthonormal matrix and a 
chaotic-based Toeplitz one. In [12], Zhang et al constructed a lass of sparse binary 
deterministic measurement matrices by using the protograph low-density parity-check (LDPC) 
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codes. In [13], Zhang et al presented deterministic bipolar measurement matrices arising from 
Legendre sequences. In [14], Tian et al proposed a deterministic construction for 
orthogonal-gradient measurement matrix based on the equiangular tight frame theory. In [15], 
Naidu et al constructed deterministic measurement matrices based on Euler Squares. In [16], 
Sasmal et al proposed a specialized composition rule based on the properties of existing binary 
matrices to produce an optimal deterministic binary CS matrices. In [17], Naidu et al related 
the construction of deterministic measurement matrices to the extremal set theory. In [18], Lu 
et al studied the optimal construction of deterministic binary CS matrix with arbitrarily given 
size by using the idea from bipartite graph. In [19, 20], Gan et al constructed deterministic 
measurement matrices based on Chebyshev chaotic sequence and topologically conjugate 
chaotic systems, respectively. In [21], Liu et al proposed deterministic measurement matrices 
based on Bose balanced incomplete block designs and used the embedding operation to 
develop more flexibility. In [22], Wang et al provided deterministic CS matrices based on 
optimal codebooks and specific codes. In [23], Liu et al involved the deterministic binary 
LDPC measurement matrices from complete protographs. In [24], Wang et al involved the 
deterministic measurement matrices by second-order Reed-Muller sequences. In [25], Hsieh 
et al designed a deterministic measurement matrix inspired from sparse fast Fourier transform. 
In [26], Fardad et al designed a low complexity hardware for generating a deterministic 
measurement matrix based on the Euclidian geometry LDPC code construction. 

In this paper, based on the binary sequence family (BSF) in [27], we construct a class of 
deterministic bipolar measurement matrices named BSFDBM. The trace representative 
function is first chosen to produce the BSF. And then, by numeric conversion, the BSF is 
converted to the corresponding bipolar sequence family. The above process is repeated to 
generate another bipolar sequence family. By putting all sequences of the two bipolar 
sequence family together as column vectors, the proposed BSFDBM matrix is finally 
obtained. 

The linear feedback shift register (LFSR) implementation of BSFDBM matrices is also 
given and the proposed BSFDBM matrices are proved to have smaller coherence than the 
corresponding Gaussian and Bernoulli random matrices. Moreover, the corresponding 
practical features of BSFDBM are analyzed and compared. Simulation experiments show that 
the proposed BSFDBM matrices outperform their Gaussian, Bernoulli, binary [18] and  
chaotic bipolar [9] counterparts in reconstruction accuracy with respect to one-dimensional 
sparse signals and different kinds of images. Meanwhile, the proposed BSFDBM matrices can 
reduce the reconstruction time compared with their Gaussian counterpart.  

The remainder of this paper is organized as follows. Section 2 introduces the basic theory 
about CS and finite field. Section 3 presents deterministic construction procedure of BSFDBM 
matrices and related LFSR implementation. Section 4 uses the coherence to analyze the 
proposed BSFDBM matrices and compares the practical features of BSFDBM with other 
constructions. Numerical simulations are given to investigate the performance of proposed 
BSFDBM matrices in Section 5. Finally, Section 6 concludes this paper. 

2. Preliminaries  

2.1 Compressed Sensing 

Suppose { } NN
iix Rx ∈= =1  is a -k sparse original signal, where { } kxi i ≤≠= 0

0
x . The 

observation signal MRy∈ is obtained from its lower-dimensional linear projection, where 
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NM << . The mathematical relationship between NRx∈  and MRy∈ can be expressed as 
Αxy = , where NMR ×∈Α is called the measurement matrix. For CS, this linear projection 

process is also the data sampling process. However, the process of signal recovery is nonlinear. 
The original signal NRx∈ can be reconstructed accurately by solving the following 0l and 

1l minimization optimization problems given by (1) and (2), respectively, where ∑
=

=
N

i
ix

1
1

x . 

0
min x

x
 subject to  Αxy = ,                       (1) 

 

1
min x

x
 subject to  Αxy = ,                       (2) 

In problems (1) and (2), the sparsest estimate of x can be obtained by orthogonal matching 
pursuit (OMP) [28] and basis pursuit (BP) algorithm [29], respectively.  

RIP serves an important role in CS [2,15], because it establishes the equivalence between 
problems (1) and (2). 

Coherence is another important criteria to construct CS matrices. 
Definition 2.1 Suppose Naaa ,,, 21 ⋅⋅⋅ are the column vectors of matrix Α , then its 

coherence )(Aµ  is denoted as 

22
1

,
max)(

ji

ji

Nji aa

aa
A

⋅
=

≤≠≤
µ ,                   (3) 

where j
T
iji aaaa =, . 

As seen in [12,30], if 







+<

)(
11

2
1

Aµ
k , any -k sparse signal x can be reconstructed 

accurately from its lower-dimensional linear measurement vector Axy =  via OMP or BP 
algorithm. Thus, for the design of measurement matrix A , the upper bound of the sparsity k  
of reconstructed signal can be increased by decreasing the coherence )(Aµ , which means an 
increase in reconstruction accuracy. To reconstruct the original signal with higher accuracy, 
it’s required to decrease the coherence )(Aµ  as far as possible. 

2.2 Finite Field 
Definition 2.2 Let β  be the primitive field element for finite field )(qGF with q elements, 
then every elements of )(qGF can be expressed as 0 or the powers of β , that is 

( ) },,,1,0{ 20 −== qqGF βββ  .  
Among },,,1,0{ 2−qββ  , the multiplicative group, denoted as *)(qGF , consists of  the 

1−q  nonzero elements . For describing convenience, ( ) },,,1,0{ 20 −== qqGF βββ   is 
simply expressed as }1,,1,0{ −⋅⋅⋅ q . 

Note that in above definition, the element structure of finite filed depends on the choice of 
the primitive element. For finite field )(qGF , if another primitive element γ is chosen, we 
can obtain a new element structure for )(qGF . 

Definition 2.3 Suppose that m and n  are two positive integers, where m is the factor of n . 
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The trace function from )2( nGF  to )2( mGF , denoted as )(xTr n
m , is 

)2(,...)(
)1(

22 nn
m GFxxxxxTr m

nmm

∈+++=
−

.                             (4) 

When 1=m , }1,0{)2()2( == GFGF m . For describing convenience, )(1 xTr n
 is simply 

denoted as )(xTr . 

Definition 2.4 Let β be a primitive element of finite field )2( nGF and its primitive 
polynomial is )(xg over )2(GF of degree n . All conjugate elements of iβ with respect 

to )2(GF are different elements of the set { } 1-

0
2 n

j
i j

=β . Let ii id

ββ =
)(2 . Then, by using the 

results from finite field, { } { } 1)(

0
21-

)(
2 −

== ⊂
id

j
in

idj
i jj

ββ  is obtained. Therefore, )(id  is the number 

of conjugate elements of  iβ  and all conjugate elements of iβ can be expressed  as 

{ } 1)(

0
2 −

=

id

j
i j

β , that is { }1)(0 222 ,,,
−

=
idiiii ββββ  . The minimal polynomial of iβ over )2(GF , 

denoted as )(xgi , is  

)()( 21)(
0

jiid
ji xxg β−∏= −
=  .                                        (5) 

3. Construction and Implementation of BSFDBM  

3.1 Construction of BSFDBM 

The proposed BSFDBM matrices are a class of 12)12( +×− nn deterministic bipolar matrices 
composed of }1,1{ − elements, where 3≥n . The concrete construction procedure of 
BSFDBM matrices is as follows: 

Step-1: According to given signal length 12 += nN , judge n  being odd or even and then 
choose the trace representative function (6) or (7) given by [27]. If n  is odd, let 12 += ln  
and choose (6) ; if n  is even, let ln 2=  and choose  (7), where *)2( nGFx∈ , )2( nGF∈λ . 

∑
=

++=
l

i

i

xTrxTrxf
1

21 )()()( λλ                                        (6) 

)()()()( 21
1

1

1

21 li

xTrxTrxTrxf l
l

i

+
−

=

+ ++= ∑λλ                             (7) 

Step-2: Select a primitive field element β for )2( nGF . Let )( t
t fb βλ
λ = , where 

}22,1,0{ −⋅⋅⋅∈ nt  , and )2( nGF∈λ . The sequence 22
0

22
0 )}({}{ −

=
−

= =
nn

t
t

tt fb βλ
λ , denoted as 

λb , is a binary pseudo-random sequence of period 12 −n . The binary sequence set 
)}2(|{ nGF∈λλb constitutes the BSF in [27]. By inputting every element of binary 

sequence 22
0}{ −

==
n

ttbλλb  into the numeric conversion function (8), we can obtain the 

associated bipolar pseudo-random sequence 22
0}{ −

==
n

ttcλλc .  



2502                                      Cunbo Lu et al.: Deterministic Bipolar Compressed Sensing Matrices from Binary Sequence Family 







=−

=
=−=

1,1
0,1

)1(
λ

λ
λ λ

t

tb
t b

b
c t                                            (8) 

For given parameter λ , the bipolar sequence  22
0}{ −

==
n

ttcλλc  is deterministic. By putting 

together all sequences of )}2(|{ nGF∈λλc  as column vectors, we can obtain a nn 2)12( ×−  
matrix 1A , which is given by 

.
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A                                          (9) 

Step-3: Select another primitive field element γ for )2( nGF . Let )( t
t fd γλ
λ = , where 

}22,1,0{ −⋅⋅⋅∈ nt  and )2( nGF∈λ . Repeat the process of Step-2 and we can obtain 

corresponding bipolar sequence family )}2(|}{{ 22
0

n
tt GFh

n

∈= −
= λλλh and corresponding 

matrix 
nn 2)12(

2
×−∈RA . The matrix 2A  has the following form 
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A                                          (10) 

Step-4: Concatenate the above two matrices  
nn 2)12(

1
×−∈RA and 

nn 2)12(
2

×−∈RA  in 
column extension form to obtain the proposed BSFDBM matrix A of size 12)12( +×− nn . It 
has the following form  

[ ]
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AAA

                 (11) 

From the construction, it is seen that the BSFDBM matrices have the sampling rate 
5.02)12( 1 ≈− +nn . The BSFDBM matrix 

12)12( +×−∈
nn

RA  is composed of two submatrices 
nn 2)12(

1
×−∈RA  and 

nn 2)12(
2

×−∈RA , each of which corresponds to a bipolar sequence family. 
The two bipolar sequence families have similar generation process, of which the only 
difference lies in the choice of the primitive field element. Without loss of generality, in the 
following section, we present the implementation of the bipolar sequence family 
corresponding to 

nn 2)12(
1

×−∈RA . 
Remark 1: For the BSFDBM matrix, the row size is the period of the associated binary 

sequence, and the column size is twice the family size of associated BSF. For the BSFDBM 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 6, June 2020                                         2503 

matrix, some columns can be discarded to vary the sampling rate. 

3.2 LFSR Implementation of BSFDBM 
In this section, we present the implementation of sequence in the bipolar sequence family 
corresponding to 

nn 2)12(
1

×−∈RA . 

For odd 12 += ln , any column vector of  
nn 2)12(

1
×−∈RA  can be obtained by first adding 

)1( +l  m-sequences and then converting the resultant summing sequence using numeric 

conversion in (8). Hence, 
nn 2)12(

1
×−∈RA  is easy to implement by summing LFSR outputs and 

using numeric converter. 
For odd 12 += ln , )1( +l  n-stage LFSRs are required to implement sequences in the BSF 

corresponding to 
nn 2)12(

1
×−∈RA . The )1( +l LFSRs have different characteristic 

polynomials for generating cyclically distinct m-sequences. Let the finite field )2( nGF  be  
generated by a primitive element β  satisfying the primitive polynomial )(xg  over  )2(GF  
of degree n . For li ≤≤1 , compute )(xgi , which is denoted as the minimal polynomial of 

i21+β over )2(GF . For LFSR 0, the characteristic polynomial is set to be )(xg  and the initial 
state can be  arbitrary including 0. For LFSR i  with li ≤≤1 , the characteristic polynomial is 
set to be )(xgi  and the initial state is given by 1

0
)21( )}({ −

=
+ n

j
ji

Tr β , which is fixed. According to 

different initial states of n-stage LFSR 0, n2 cyclically distinct binary sequences are generated 
to constitute the required BSF. The related LFSR implementation of 1A  is simply shown in 
Fig. 1.  

 

Fig. 1. LFSR  implementation of  corresponding matrix 
 
For even ln 2= , the BSF corresponding to 

nn 2)12(
1

×−∈RA  can be implemented similarly 
to that case of odd n , except that the size of LFSR l  is 2n . 

From above implementation, it can be seen that the proposed BSFDBM matrices are very 
efficient for hardware realization, which is extremely easy via LFSR structures. 
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4. Performance Analysis 

4.1 Coherence Analysis 
Coherence is an important criteria to describe the property of matrices. For CS matrices, 
decreasing the coherence leads to an increase in reconstruction accuracy. This section first 
gives the coherence of proposed BSFDBM matrices and then derives that the coherence of 
BSFDBM matrices is smaller than the corresponding Gaussian and Bernoulli random 
matrices.  

In order to analyze the coherence of the BSFDBM matrices, we first introduce the following 
two definitions and one lemma [27]. 

Definition 4.1 For two different binary sequences ),,,( 10 vaaa =a and 
),,,( 10 vbbb =b of period v , the cross-correlation of a and b is defined as 

∑
−

=

+ +−=
1

0
, )1()(

v

i

ba iiC ττba  for 10 −≤≤ vτ , where τ+i is computed modulo v . If a and b are 

cyclically equivalent, )(, τbaC  is the auto-correlation of a or b .  

Definition 4.2 Let },,,{ )1()1()0( −= rS sss  be the set of r cyclically distinct binary 

sequences of period v . Define )(max )()( ,max τjiCC ss=  for 10 −≤≤ vτ and 1,0 −≤≤ rji , 

where 0≠τ  if ji = . Obviously, maxC  is the maximum value among all auto- and 
cross-correlations of the sequences in S . maxC  is also called the maximum correlation 
magnitude of S . 

Lemma 4.1 For odd n , the cross-correlation of any two binary sequences a and b  in BSF 
given by (6)  is }21,1{)( 2)1(

,
+±−−∈ nC τba  and the maximum correlation maxC   is 

21)(n21 ++ .  
For even n , the cross-correlation of any two binary sequences a and b  in BSF given by (7)  

is }21,21,1{)( 122
,

+±−±−−∈ nnC τba  and the maximum correlation maxC  is 12n21 ++ . 

Theorem 4.1 Let A be a )3(2)12( 1 ≥×− + nnn  BSFDBM matrix. If n is odd, 

12
21)(

2)1(

−
+

=
+

n

n

Aµ  ; if  n  is even, 
12

21)(
12

−
+

=
+

n

n

Aµ . 

Proof:  For matrix  
12)12( +×−∈

nn

RA , we have 

22
21

,
max)(

1 ji

ji

ji n AA

AA
A

⋅
=

+≤≠≤
µ                                           (12) 

where iA is the i th column of A . Note that sequences iA  and jA  are bipolar sequence of 
length 12 −n .Thus  

21

22
)12( −== nji AA                                            (13) 

As seen in Section 3, the BSFDBM matrix [ ]21 | AAA = is composed of two submatrices 
nn 2)12(

1
×−∈RA and  

nn 2)12(
2

×−∈RA , each of which corresponds to a primitive field element. 
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For 2,1=s , 
nn

s
2)12( ×−∈RA has a BSF )}2(|)({ nGFs ∈λλb  and a associated bipolar 

sequence family )}2(|)({ nGFs ∈λλc .  The i th  column of sA , denoted as i
sA , is the 

bipolar sequence )(sic  in )}2(|)({ nGFs ∈λλc . 

Depending on i and j , the calculation of ji

ji n
AA ,max

121 +≤≠≤
 can be classified into two 

cases. 
Case 1: nji 2,1 ≤≤  or 1n 2,12 +≤≤+ nji .  

In this case,  .,max,max,max 22
21

11
2121 1

ji

ji

ji

ji

ji

ji nnn
AAAAAA

≤≠≤≤≠≤≤≠≤
==

+
            

Assume that 22
0)}({)( −

==
n

t
i
t

i sbsb and 22
0)}({)( −

==
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t
j

t
j sbsb are any two binary sequences in 

)}2(|)({ nGFs ∈λλb . From (8), the associated two bipolar sequences 22
0)}({)( −

==
n

t
i
t

i scsc  

and 22
0)}({)( −

==
n

t
j

t
j scsc  are obtained. 

We have )0()1()()()(),(, )(),(

22

0

)()(
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0
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t

j
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i
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jij
s

i
s ji

n
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t
i
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n

Cscscss bbccAA =−=== ∑∑
−

=

+
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=

       

for 2,1=s .       
Based on Lemma 4.1, we derive that if n  is odd,  

2)1(

2)1(

)2(),2(21

22
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11
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21,1max
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                              (14)      

In a similar derivation process for odd n , for even n , we have 
12

22
21

11
21

21,max,max +

≤≠≤≤≠≤
+== nji

ji

ji

ji nn
AAAA                 (15) 

Case 2: ni 21 ≤≤  and 1n 212 +≤≤+ nj .  

In this case, ji

ji

ji

ji nn 21
2,121

,max,max
1

AAAA
≤≤≤≠≤

=
+

. 

Assume that 22
0)}1({)1( −

==
n

t
i
t

i bb  and 22
0)}2({)2( −

==
n

t
j

t
j bb are any binary sequences of 

)}2(|)1({ nGF∈λλb and )}2(|)2({ nGF∈λλb , respectively. From (8), the associated two 

bipolar sequences 22
0)}1({)1( −

==
n

t
i
t

i cc  and 22
0)}2({)2( −

==
n

t
j

t
j cc  are obtained. We have 

).0()1()2()1()2(),1(, )2(),1(
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)2()1(
22

0
21 ji

n
j

t
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n

Ccc
t
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jiji
bbccAA =−=== ∑∑

−

=

+
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The sequence families )}2(|)1({ nGF∈λλc and )}2(|)2({ nGF∈λλc have similar 
generation process, of which the only difference lies in the choice of the primitive field 
element. By using the results from finite field, the two bipolar sequence 
families )}2(|)1({ nGF∈λλc and )}2(|)2({ nGF∈λλc are cyclically equivalent. 
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Correspondingly, )}2(|)1({ nGF∈λλb and )}2(|)2({ nGF∈λλb  are cyclically  
equivalent. Therefore, for )}2(|)2({)2( nj GF∈∈ λλbb , there must exist a corresponding 
cyclically  equivalent sequence )1(lb  in )}2(|)1({ nGF∈λλb . Thus, there exists a integer 
τ to make )()0( )1(),1()2(),1( τliji CC bbbb = hold. According to Definition 4.1, τ means the phase 

shift of sequence. Based on Lemma 4.1, we derive that if n  is odd,  

.21)(max)0(max,max 2)1(
)1(),1(2,1)2(),1(2,1

21
2,1

+

≤≤≤≤≤≤
+=== n

jiji

ji

ji
linjinn

CC τbbbbAA        (16) 

In a similar derivation process for odd n , for even n , we have .21,max 12
21

2,1

+

≤≤
+= nji

ji n
AA                                             

Combing the Cases 1 and 2, we have the conclusion that if n  is odd,  
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Similarly, if n  is even, 12
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1
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+
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Theorem 4.1 can be proved after substituting above conclusions and (13) into (12). 
 
 To compare the coherence of the BSFDBM matrices with the Gaussian and Bernoulli 

matrices, we need the following two lemmas [31]. 
Lemma 4.2 Let p

iix 1}{ =  and p
iiy 1}{ = be sequences of i.i.d. zero-mean Gaussian random 

variables with variance 2σ . Then .
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Lemma 4.3 Let p
iix 1}{ =  and p

iiy 1}{ = be sequences of i.i.d. zero-mean bounded random 

variables which satisfy axi ≤ and 2ayx ii ≤ . Then .
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Theorem 4.2 For a )3(2)12( 1 ≥×− + nnn  BSFDBM matrix A  and its Gaussian 
counterpart B , )()( BA µµ <  holds. 

Proof:  Let  ib be the column vector of the matrix  
12)12( +×−∈

nn

RB  for 121 +≤≤ ni  .  
Without loss of generality, we prove the theorem in case of even n . 
Suppose that 12

1}{ −
=

n

iix  and 12
1}{ −
=

n

iiy  are any two column vectors of matrix B . Based on 

Lemma 4.2 with 12 −= np , 
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Let 
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. It is easy to derive that ),( tnz increases with n  

decreasing. Thus, we have ),4(),( tztnz ≤ . We can further derive that 
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We observe that ),4( tz increases with t  decreasing. Thus, we have 
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According to Definition 2.1,  ∑
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Further, we have 
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Aµ , we have 

)()( AB µµ > . 
Similarly, we can obtain the same conclusion in case of odd n . Thus, we complete the proof 

of Theorem 4.2. 
 
In a similar derivation process of Theorem 4.2, we can obtain the following corollary based 

on the Lemma 4.3.             
Corollary 4.1 For a )3(2)12( 1 ≥×− + nnn  BSFDBM matrix A and its Bernoulli 

counterpart D of elements }1,1{ − , )()( DA µµ <  holds. 
Remark 2: Theorem 4.2 and Corollary 4.1 can demonstrate that the BSFDBM matrices 

outperform their Gaussian and Bernoulli counterparts in reconstruction accuracy.  
Based on the above work, a novel framework has been presented for constructing bipolar 
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measurement matrices via BSF. Furthermore, through the coherence analysis, we have shown 
that the BSFDBM matrices are proper candidates for CS matrices, just as Gaussian and 
Bernoulli do. In fact, by this framework, more bipolar matrices can be explored by many other 
binary sequence families in Table 1.   

 
Table 1. Comparison of different families of binary sequences 

Family of Sequences Period Family Size 
Maximum Correlation 

Magnitude maxC  
Parameter 

n  

Gold [32] 12 −n  12 +n  /2)1(21 ++ n  odd 

Udaya [33] 12 −n  12 +n  1/221 ++ n  even 
Rothaus [34] 12 −n  1222 ++ nn  /2)3(21 ++ n  odd 

Delsarte-Goethals 
[35] )12(2 −n  122 −n  /2)3(22 ++ n  odd 

 
Remark 3: We replace the trace representative functions (6) and (7) by functions (24) and 

(25) given in [27], respectively, where *)2( nGFx∈ , )2(, 10
nGF∈λλ . 
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The BSFDBM A  will become a new bipolar measurement matrix of size 122)12( +×− nn  , 

where 5≥n . If n is odd, it has the coherence 
12

21)(
2)3(

−
+

=
+

n

n

Aµ ; if n is even, 

12
21)(

22

−
+

=
+

n

n

Aµ .  Without complete detail, it is pointed out that this kind of bipolar matrices 

can also serve as CS matrices.  
Remark 4: For the binary sequence families in Table 1, we can apply our method to these 

binary systems, and obtain a large family of bipolar CS matrices. The minimum sampling rate  
equals twice the family size divided by the period of the binary sequence. 

4.2 Benefit of BSFDBM 
Based on the above coherence analysis, the low coherence of BSFDBM can ensure its good 
sensing performance. However, for practical CS matrix, we should also consider other 
practical features, including memory cost, computational complexity and hardware realization. 
Here, we analyze and compare the practical features of BSFDBM with its counterparts 
(Gaussian, Bernoulli random matrices, deterministic binary matrices [18] and CsPM [9] ) in 
Table 2. Among them, binary matrix [18] is obtained by using the idea from bipartite graph 
with column degree )( Mceild = . CsPM is the Chebyshev chaotic bipolar matrix [9]. Note 
that operator ‘ceil’ rounds the elements to the nearest integers towards infinity. For a fair 
comparison, let NM ×  be the matrix size and B  be the number of required bits to store every 
decimal element. 
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Table 2. The comparison of practical feature of BSFDBM  

 

Features BSFDBM  Gaussian Bernoulli Binary [18] CsPM [9] 

Randomness or 
deterministic  Deterministic Randomness Randomness Deterministic Deterministic 

Memory cost 
(bits)  MN  BMN  MN  MN  MN  

Multiplier-less Yes No Yes Yes Yes 
Hardware- 

friendly Yes No No Yes Yes 

 
 

Table 2 shows that the BSFDBM has the following practical advantages: 
(1) Low memory cost: The BSFDBM consists of elements of +1 and -1. Therefore 

BSFDBM requires MN bits to store all elements. Compared with its random Gaussian 
counterparts, BSFDBM reduces the memory requirement, thus providing storage efficiency. 
This feature would make BSFDBM be beneficial to practical resource-limited CS applications, 
such as wireless body network; 

(2) Low computational complexity: The proposed BSFDBM matrix being bipolar supports 
multiplier-less operation, fast data acquisition and recovery. For data acquisition and recovery, 
the arithmetic operations of BSFDBM are addition and subtraction, whereas the random 
Gaussian construction demands addition, subtraction and multiplication. 

(3) Hardware-friendly realization: As seen in section 3.2, the implementation of BSFDBM 
is extremely easy by means of LFSR structures, thus providing hardware-friendly realization.  
However, in the random constructions (Gaussian and Bernoulli), random number generation 
has very high hardware requirement, which is not hardware-friendly. 

From the above analysis, it can be clearly seen that, compared to its random constructions 
(Gaussian and Bernoulli), the proposed BSFDBM has a good tradeoff among sensing 
performance, memory cost, computational complexity and hardware realization.  

Remark 5: From Table 2, we can see that the proposed BSFDBM has comparable practical 
features (memory cost, computational complexity and hardware realization) to that of the 
binary matrices [18] and CsPM [9]. In the following section, we will compare the sensing 
performance of proposed BSFDM matrices with that of binary matrices [18] and CsPM [9] via 
numerical simulations. 

6. Simulation and Results 
In this section, the performance of proposed BSFDBM matrices is investigated through 
numerical simulations with sparse signals and images. Here, the compared matrices are 
Gaussian random, Bernoulli random, deterministic binary matrices [18] and CsPM [9]. For 
Gaussian matrix, the value of every element is i.i.d. from standard normal distribution )1,0(N . 
For Bernoulli matrix, the value of every element is -1 or 1 with equal probability. As for signal 
recovery, the OMP algorithm is performed to profit from the lower coherence of CS matrices.  
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5.1 BSFDBM for Sparse Signals 
The reconstruction accuracy of BSFDBM matrices is compared with that of corresponding 
Gaussian, Bernoulli, binary and CsPM matrices in noiseless and noisy scenarios. Two types of 
BSFDBM matrices of size 12)12( +×− nn are generated: (i) BSFDBM matrices of size 

512255× for even n and 8=n ; (ii) BSFDBM matrices of size 256127×  for odd n  and 
7=n .  

In the simulation, the k -sparse 12 1×+n  original signals x  with k nonzero locations 
uniformly randomly and corresponding k nonzero values taken by )1,0(N  are considered. For 
each sparsity level k , 1000 trials are averaged to obtain the corresponding numerical result. 
Let Rx be the reconstructed solution from OMP. In noiseless scenario, if 6

2
10−<− Rxx , 

this reconstruction trial is declared to be successful. The percentage of successful 
reconstruction times is calculated as the successful reconstruction probability. In noisy 
scenario, additive Gaussian noise e  is added to the signal x , where the signal-to-noise ratio 
(SNR) is 30dB. The reconstruction SNR is denoted as 

dBSNR R )(log20)(
2210 xxxx −⋅= . 

Noiseless scenario: For matrices of size 512255× , Fig. 2(a) shows the probability of 
successful reconstruction of  k -sparse 1512×  signals, where 13840 ≤≤ k . For matrices of 
size 256127× , Fig. 2(b) shows the probability of successful reconstruction of k -sparse 

1256×  signals, where 8515 ≤≤ k .  
 

  
(a) (b) 

Fig. 2. Comparison of the successful reconstruction probability of  noiseless sparse signals.  
(a)  Matrices of size 512255× , (b) Matrices of size 256127×  

 
It can be seen from Fig. 2 that the reconstruction accuracy of BSFDBM matrix is superior to 

the Gaussian, Bernoulli, binary and CsPM matrices.  
 
Noisy scenario: For matrices of size 512255× , Fig. 3(a) shows the reconstruction SNR of 

k -sparse 1512×  signals, where 13840 ≤≤ k . For matrices of size 256127× , Fig. 3(b) 
shows the reconstruction SNR of k -sparse 1256× signals, where 8515 ≤≤ k  .  
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(a) (b) 

Fig. 3. Comparison of the reconstruction SNR of noisy sparse signals.  
(a) Matrices of size 512255× , (b) Matrices of size 256127×  

 
It can be seen from Fig. 3 that for all sparsity level, the BSFDBM matrix has more 

reconstruction SNR than its Gaussian, Bernoulli, binary and CsPM counterparts. This 
illustrates that the BSFDBM matrix is more robust to noise than other constructions 
considered.  

 
From above two scenarios, it is observed that, for noiseless and noisy scenarios, the 

proposed BSFDBM matrices provide better reconstruction accuracy than the corresponding 
Gaussian, Bernoulli, binary and CsPM matrices. 

5.2 BSFDBM for Image Signals 
In this part, we compare the performance of image reconstruction of BSFDBM matrices with 
that of corresponding Gaussian, Bernoulli, binary and CsPM matrices via the block CS 
algorithm. As shown in Fig. 4, the test images consist of five grayscale images and five color 
images. The five grayscale test images are “boat” of size 256256× , “fruits” of size 

256256× , “liftingbody” of size 512512× , “phantom” of size 256256×  and “cameraman” 
of size 256256× , whereas the five color test images are “concordaerial” of size 

330602036 ×× , “bone1” of size 31242837 ×× , “bone2” of size 3631692 ×× , 
“lighthouse” of size 3480640 ××  and “Saturn” of size 312001500 ×× . The sparsifying 
basis for these six images is the Daubechies 9/7 discrete wavelet transform (DWT). 
Considering the feature of  Daubechies 9/7 DWT and the tradeoff between reconstruction time 
and accuracy, the block sizes 1632×  and 3232×  are selected, each of which corresponds to 
one type of BSFDBM matrices. To characterize the image reconstruction performance, the 
peak signal-to-noise ratio (PSNR) is used as the evaluation criterion. For a two-dimensional 
image signal x of size nm×  with Rx be the reconstructed signal, the PSNR is denoted as 

dBnmPSNR R ))///(255(log10)( 2

2
2

10 xxx −⋅= .  
Note that for a three-dimensional color image x , we first convert the signal x  to a 

two-dimensional grayscale signal Fx by concatenating the R, G, B components in order and  
column extension form. The resulting signal Fx and corresponding reconstructed signal F

Rx  
are applied to calculate )( FPSNR x . 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 
Fig. 4. Test images. (a) Boat, (b) Fruits, (c) Liftingbody, (d) Phantom, (e) Cameraman,  

(f) Concordaerial, (g) Bone1, (h) Bone2, (i) Lighthouse, (j) Saturn 
 

Tables 3 and 4 show the reconstruction PSNR of various test images with block sizes 
1632×  and 3232× , respectively.  

 
Table 3. The reconstruction PSNR (dB) of various test images with block size 1632×  

Images BSFDBM Gaussian Bernoulli Binary CsPM 

Boat 30.49 28.40 28.67 28.58 28.70 

Fruits 27.92 25.92 26.10 25.99 25.81 

Liftingbody 36.87 35.35 35.45 35.29 35.41 

Phantom 28.28 25.52 25.32 26.24 25.69 

Cameraman 25.55 23.91 24.16 23.80 24.24 

Concordaerial 30.84 29.14 29.22 29.20 29.19 

Bone1 35.26 33.76 33.45 32.90 33.65 
Bone2 28.79 27.70 27.55 27.43 27.63 

Lighthouse 28.39 26.96 26.75 26.97 27.07 
Saturn 50.67 49.29 49.27 49.27 49.32 

 
Table 4. The reconstruction PSNR (dB) of various test images with block size 3232×  

  Images BSFDBM Gaussian Bernoulli Binary CsPM 

Boat 31.14 29.25 29.31 29.34 29.34 

Fruits 28.78 26.87 26.94 26.92 26.88 

Liftingbody 37.48 36.10 36.09 35.95 36.08 

Phantom 32.00 29.95 29.69 29.76 30.16 

Cameraman 26.09 24.44 24.65 24.28 24.67 

Concordaerial 31.18 29.56 29.56 29.53 29.54 

Bone1 38.17 36.17 36.71 36.63 36.67 
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Bone2 29.53 28.22 28.17 28.11 28.29 
Lighthouse 29.02 27.59 27.43 27.55 27.44 

Saturn 51.18 49.94 49.91 49.89 49.92 
 
From Tables 3 and 4, it can be seen that for all grayscale and color images, the BSFDBM 

matrix has the highest reconstruction PSNR among the five matrices. Moreover, the 
reconstruction PSNR increases with the block size increasing. 

In the following, we further show the visual results via the “bone2” image reconstruction. 
Fig. 5 shows the reconstructions with block size 1632× . 

From Fig. 5, it can be seen that the BSFDBM matrix provides competitive visualization 
performance when compared to the Gaussian, Bernoulli, binary and CsPM matrices. 
 

     
(a) (b) (c) (d) (e) 

Fig. 5. Reconstructions with block size 32x16. (a) BSFDBM, (b) Gaussian, (c) Bernoulli, (d) binary, (e) 
CsPM 

 

5.3 Computational Complexity of BSFDBM 
Table 2 shows that the multiplier-less operation is supported by BSFDBM, Bernoulli, 

binary and CsPM matrices, and that the Gaussian matrix doesn’t support multiplier-less 
operation. To compare the computational complexity of the five matrices, we record the 
reconstruction time, which can characterize the computational complexity. Table 5 shows the 
reconstruction time in seconds for these images in Fig. 4 with block size 1632× . 

 
Table 5. The reconstruction time (second) of various test images with block size 1632×  

Images BSFDBM Gaussian Bernoulli Binary CsPM 

Boat 28.66 29.91 27.81 28.34 28.88 

Fruits 27.73 29.91 28.02 28.19 27.73 

Liftingbody 112.67 118.27 111.72 113.16 111.13 

Phantom 24.23 25.72 24.72 24.58 24.98 

Cameraman 30.98 33.05 31.56 31.00 30.98 

Concordaerial 7927.34 8536.52 8014.30 8048.41 8021.94 

Bone1 1246.98 1353.36 1260.72 1271.75 1266.14 
Bone2 535.95 574.73 535.02 539.13 538.41 

Lighthouse 487.41 527.00 493.86 493.88 491.27 
Saturn 2343.08 2527.25 2370.86 2380.83 2365.53 
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Table 5 shows that for all these matrices, the Gaussian matrix has the longest reconstruction 
time. This is because that the additional multiplication operation introduces more 
reconstruction time. Numerical results show that the BSFDBM can reduce the computational 
complexity compared with its Gaussian counterpart. Particularly, the complexity gain is large 
when reconstructing color images “concordaerial”, “bone1” and “Saturn”. This corresponds to 
a large-scale data scenario. In addition, there is not much difference of reconstruction time 
among the BSFDBM, Bernoulli, binary and CsPM matrices.  

 
Numerical simulations with sparse signals and images show that the reconstruction 

accuracy of BSFDBM matrices is superior to the Gaussian, Bernoulli, binary and CsPM 
matrices, which coincides with the conclusion of Theorem 4.2 and Corollary 4.1. The 
BSFDBM matrices can also reduce the reconstruction time compared with their Gaussian 
counterpart. Consequently, the designed BSFDBM matrices inspired from BSF possess the 
practical features of good sensing performance, low memory cost, low computational 
complexity and easy hardware implementation. These features can make the proposed 
BSFDBM matrices applied to practical scenarios of CS application, including sparse signal 
restore and image block CS. 

6. Conclusion 
Based on BSF, this paper proposes a novel method of constructing bipolar measurement 
matrices named BSFDBM and gives related LFSR implementation. For BSFDBM matrices, 
the coherence is given in different situations and proved to be smaller than that of  
corresponding Gaussian and Bernoulli matrices via theoretical derivation. Moreover, the 
corresponding practical features of BSFDBM are analyzed and compared. Simulation 
experiments show that the BSFDBM matrices outperform their Gaussian, Bernoulli, binary 
and chaotic bipolar counterparts in reconstruction accuracy. The BSFDBM matrices can also 
reduce the computational complexity compared with their Gaussian counterpart. The 
BSFDBM matrices are very efficient for sensing performance, memory, complexity and 
hardware realization, which is beneficial to practical CS. 
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