• Title/Summary/Keyword: measured displacement

Search Result 1,719, Processing Time 0.027 seconds

Bending Performances and Collapse Mechanisms of Light-weight Aluminum-GERP Hybrid Square Tube Beams (경량화 알루미늄-GFRP 혼성 사각관 보의 굽힘성능 및 붕괴 메커니즘)

  • Lee, Sung-Hyuk;Kim, Hyung-Jin;Chang, Young-Wook;Choi, Nak-Sam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.8-16
    • /
    • 2007
  • Bending collapse of light-weight square tubes used for vehicle structure components is a dominant failure mode in oblique collision and rollover of vehicles. In this paper bending performances of aluminum-GFRP hybrid tube beams were evaluated in relation with bending deformation behavior and energy absorption characteristics. Aluminum/GFRP hybrid tube beams fabricated by inserting adhesive film between prepreg and metal layer were used in the bending test. Failure mechanisms of hybrid tubes under a bending load were experimentally investigated to analyze the bending performance as a function of ply orientation and composite layer thickness. Ultimate bending moments and energy absorption capacity of hybrid tube beams were obtained from the measured load-displacement corves. It was found that aluminum/GFRP hybrid tubes could be converted to rather stable collapse mode showing excellent energy absorption capacity in comparison to the pure aluminum tube beams. In particular, the hybrid tube beam with $[0^{\circ}/90^{\circ}]s$ composite layer showed a large improvement by about 78% in energy absorption capacity and by 29% in specific energy absorption.

The Inclination Characteristics of PSC BOX in FCM Bridge Construction Method (FCM 교량 가설 공법에서 주두부의 기울음 특성)

  • Hyun-Euk Kang;Wan-Shin Park;Young-Il Jang;Sun-Woo Kim;Hyun-Do Yun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.3
    • /
    • pp.12-20
    • /
    • 2023
  • This study presents basic data on how to secure stability by analyzing the change in tensile force of steel rod and the inclination characteristics of PSC BOX in the "Temporary fixation system using internal prestressing tendon", which is mainly applied to construction of superstructures by FCM. To date, it has been difficult to confirm the changes in tension force of the steel rod and the inclination of the PSC BOX because the steel rod was installed vertically inside the pier and the PSC BOX. Therefore, measurement of the change in length of the steel rod and the displacement of PSC BOX were performed using a micro-measured FBG sensor. Comparisons of the calculated tensile force and the residual tensile force of the steel rod revealed that the safety factor decreased in all bridges. The cause was mainly identified to be the loss of tensile force in fixation~1segment, and countermeasures are suggested. The analysis of the inclination characteristics showed that the inclination increased with the segment progresses even in bridges with sufficient safety factor, and the difference before and after the segment was confirmed. In addition, the increase in inclination was related to the loss of tension force in the steel rod, and the stress on the opposite sides of the inclination was further reduced. It is believed that upward tensile force is generated in the steel rod on the opposite side of the inclined side due to the unbalanced moment, causing the difference in stress of the steel rod between the two sides.

Determination of Maximum Shear Modulus of Sandy Soil Using Pressuremeter Tests (프레셔미터 시험을 이용한 사질토 지반의 최대 전단탄성계수 결정)

  • Kwon, Hyung Min;Jang, Soon Ho;Chung, Choong Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3C
    • /
    • pp.179-186
    • /
    • 2008
  • Pressuremeter test estimates the deformational properties of soil from the relationship between applied pressure and the displacement of cavity wall. It is general to utilize the reloading curve for the estimation of deformational properties of soil because the initial loading curve can be affected by the disturbance caused by boring. On the other hand, the instrumental resolution or the variation of measured data makes it hard to estimate the maximum shear modulus from pressuremeter test results. This study suggested the methodology estimating the maximum shear modulus from pressuremeter test directly, based on the curve fitting of reloading curve. In addition, the difference was taken into account between the stress state around the probe in reloading and that of the in-situ state. Pressuremeter tests were conducted for 15 cases using a large calibration chamber, together with a number of reference tests. The maximum shear moduli taken from suggested method were compared with those from empirical correlation and bender element test.

Prediction of the Static Deflection Profiles on Suspension Bridge by Using FBG Strain Sensors (FBG 변형률센서를 이용한 현수교의 정적 처짐형상 추정)

  • Cho, Nam-So;Kim, Nam-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.699-707
    • /
    • 2008
  • For most structural evaluation of bridge integrity, it is very important to measure the geometric profile, which is a major factor representing the global behavior of civil structures, especially bridges. In the past, because of the lack of appropriate methods to measure the deflection profile of bridges on site, the measurement of deflection has been restricted to just a few discrete points along the bridge, and the measuring points have been limited to the locations installed with displacement transducers. Thus, some methods for predicting the static deflection by using fiber optic strain sensors has been applied to simply supported bridges. In this study, a method of estimating the static deflection profile by using strains measured from suspension bridges was proposed. Based on the classical deflection theory of suspension bridges, an equation of deflection profile was derived and applied to obtain the actual deflection profile on Namhae suspension bridge. Field load tests were carried out to measure strains from FBG strain sensors attached inside the stiffening girder of the bridge. The predicted deflection profiles were compared with both precise surveying data and numerical analysis results. Thus, it is found that the equation of predicting the deflection profiles proposed in this study could be applicable to suspension bridges and the FBG strain sensors could be reliable on acquiring the strain data from bridges on site.

A Study on the Slip Behavior of Coated High Tension Bolted Joints (도장처리한 고장력볼트 연결부의 미끄러짐 특성에 관한 연구)

  • Kyung, Kab Soo;Lee, Seung Yong;Kim, Ki Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.691-697
    • /
    • 2008
  • Coating the high tension bolted frictional joint has been generally allowed for anti-corrosion purpose. However in case of painting on paying surface of the high tension bolt, the influence on a slip strength of the joint depending on precision of painting has remained controversial. The study thus was intended to identify the slip behavior on high tension bolted frictional joint when applying ceramic painting, which has been currently developed. A slip test was conducted on a high tension bolted frictional joint specimen on which ceramic painting has been applied and a slip load and slip coefficient were measured. Based on result, the safety and usability of ceramic painting-applied high tension bolted frictional joint was evaluated. As a result, a difference to some extent by specimen in terms of load-displacement when a slip occurred was observed but an average slip coefficient appeared to have exceeded 0.4, which is the design frictional coefficient set forth in the specification. To secure the safety and usability of ceramic painting-applied high tension bolted frictional joint, it's necessary to establish the standard for painting as well as to revise the relevant specification.

Investigation of Mechanical Behavior and Hydrates of Concrete Exposed to Chloride Ion Penetration (염해를 받은 콘크리트의 역학적 거동 및 수화 생성물 조사)

  • Yunsuk Kang;Gwihwan Lim;Byoungsun Park
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.381-390
    • /
    • 2023
  • In this study, the mechanical performance of concrete exposed to chloride ion penetration was investigated. And a compressive stress-strain model was presented. CaCl2 solution was added when mixing concrete to simulate long-term chloride ion penetration, and the concentration of chlorine ions was set to 0, 1, 2, and 4 % based on the weight of the binder. To investigate the compressive stress-strain curve after the peak stress of concrete, the compressive strength was measured by displacement control. When the chlorine ion concentration was 1 %, peak stress increased, but when the chlorine ion concentration was 2 % or more, peak stress decreased. In the case of peak strain, no trend according to chloride ion concentration was observed at 7 days. At 28 days, peak strain decreased as the chloride ion concentration increased. A compressive stress-strain curve model based on the Popovics model was presented using changes in peak stress and peak strain at 28 days. Microstructure analyses were performed to investigate the cause of the decrease in mechanical performance as the concentration of chlorine ions increased. It was confirmed that as the concentration of chlorine ion increased, Friedel's salt increased and portlandite decreased.

Determination of Exposure during Handling of 125I Seed Using Thermoluminescent Dosimeter and Monte Carlo Method Based on Computational Phantom

  • Hosein Poorbaygi;Seyed Mostafa Salimi;Falamarz Torkzadeh;Saeid Hamidi;Shahab Sheibani
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.4
    • /
    • pp.197-203
    • /
    • 2023
  • Background: The thermoluminescent dosimeter (TLD) and Monte Carlo (MC) dosimetry are carried out to determine the occupational dose for personnel in the handling of 125I seed sources. Materials and Methods: TLDs were placed in different layers of the Alderson-Rando phantom in the thyroid, lung and also eyes and skin surface. An 125I seed source was prepared and its activity was measured using a dose calibrator and was placed at two distances of 20 and 50 cm from the Alderson-Rando phantom. In addition, the Monte Carlo N-Particle Extended (MCNPX 2.6.0) code and a computational phantom with a lattice-based geometry were used for organ dose calculations. Results and Discussion: The comparison of TLD and MC results in the thyroid and lung is consistent. Although the relative difference of MC dosimetry to TLD for the eyes was between 4% and 13% and for the skin between 19% and 23%, because of the existence of a higher uncertainty regarding TLD positioning in the eye and skin, these inaccuracies can also be acceptable. The isodose distribution was calculated in the cross-section of the head phantom when the 125I seed was at two distances of 20 and 50 cm and it showed that the greatest dose reduction was observed for the eyes, skin, thyroid, and lungs, respectively. The results of MC dosimetry indicated that for near the head positions (distance of 20 cm) the absorbed dose rates for the eye lens, eye and skin were 78.1±2.3, 59.0±1.8, and 10.7±0.7 µGy/mCi/hr, respectively. Furthermore, we found that a 30 cm displacement for the 125I seed reduced the eye and skin doses by at least 3- and 2-fold, respectively. Conclusion: Using a computational phantom to monitor the dose to the sensitive organs (eye and skin) for personnel involved in the handling of 125I seed sources can be an accurate and inexpensive method.

Correlation between Lumbar Malposition and Disc Herniation in Lumbar Disc Herniation Patients: Focused on L4-L5, L5-S1 (요추 추간판 탈출 환자에서 나타나는 요추부 변위와 추간판 탈출의 상관관계: L4-L5, L5-S1 요추 간 추간판 탈출을 중심으로)

  • Yeon-Hoo Yi;Da-woon Song;Jae-Min Jeong;Tae-ha Kwon;Sae-young Bong;Yoo-jin Lee;Jin-Bong Choi
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.4
    • /
    • pp.185-193
    • /
    • 2023
  • Objectives This study was conducted to find out the correlation between lumbar malposition and lumbar disc herniation. Methods Among the patients who visited Gwangju Jaseng Hospital of Korean Medicine from January 2019 to January 2021, taking 92 patients under age 60 who had the records of X-rays and magnetic resonance imaging (MRI) images as the research subjects, Cobb's angle was measured in anterior-posterior (AP) view and lateral (LAT) view, the number of displacements was scored by listing categories defined by The Korean Society of Chuna Manual Medicine for Spine and Nerves. The degree of lumbar intervertebral disc herniation was expressed as a percentage according to the method of Kato, etc., and the correlation between each factor was analyzed. Results AP curvature and MRI herniation index showed significant positive correlation in L4-L5 level but there was no significant difference in L5-S1 level. LAT curvature and MRI herniation index had no correlation in L4-L5 level, but there was a significant negative correlation in L5-S1 level. Malposition score and MRI herniation index had a significant positive correlation in L5-S1 level, whereas there was no correlation in L4-L5. Conclusions As a result of the study, AP curvature and MRI herniation index showed a significant positive tendency in L4-L5 lumbar spine, and LAT curvature and MRI herniation index showed a significant negative tendency in L5-S1 lumbar spine. Malposition score and MRI herniation index were found to have a significant positive tendency in L5-S1 lumbar spine.

Diagnosis of Irrigation Time Based on Microchange of Stem Diameter in Greenhouse Tomato (온실재배 토마토의 농직경 변화에 의한 관개시기 진단)

  • 이변우
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.250-257
    • /
    • 1997
  • Stem diameter and shoot fresh weight of tomato grown in greenhouse were measured non-destructively at 10 minutes interval from 1 to 16 July, 1996 with displacement detector using strain gauges and with suspension-type load cell, respectively, and simultaneously were measured soil water potential, transpiration and solar radiation. Ample water was irrigated before experiment, and thereafter, irrigations were made on the next morning when visual symptoms of wilting appeared. Shoot fresh weight and stem diameter showed very similar patterns in diurnal changes which are characterized by predawn maximum and afternoon minimum and in long- term evolutions, suggesting that stem diameter shrinkage and expansion are closely related to plant water content and growth, respectively, Shoot weight and stem diameter reached minimum values a little later than the time on which transpiration showed maximum. The daily net gains of fresh weight(DG) and stem diameter(DI) showed significantly Positive correlations with solar radiation in those days on which plants were not water-stressed. However, Dl and DG on those days of water stress showed much lower values than expected from the relationships between solar radiation and them. Transpiration was much lower than the expected potential transpiration on 10 July, implying that plants were water-stressed. In this case water stress was not detected from visual symptom of wilting and/or soil water potential, but was able to be identified by the lower DI and DG than the expected. The maximum contraction of stem diameter(MC) and the maximum loss of fresh weight(ML) during daytime showed significantly positive correlations with solar radiation in those days on which plants were not water-stressed and were observed greater than expected from the relationships on severely water-stressed days. But mild water stress could not be discernable by ML and MC. It would be concluded that the daily net gains of fresh weight and/or stem diameter could be used as criteria for diagnosing the water status of tomato and for triggoring the onset of irrigation in automatic system.

  • PDF

Analysis of the Movement of Surgical Clips Implanted in Tumor Bed during Normal Breathing for Breast Cancer Patients (유방암 환자의 정상 호흡에서 종양에 삽입된 외과적 클립의 움직임 분석)

  • Lee, Re-Na;Chung, Eun-Ah;Suh, Hyun-Suk;Lee, Kyung-Ja;Lee, Ji-Hye
    • Radiation Oncology Journal
    • /
    • v.24 no.3
    • /
    • pp.192-200
    • /
    • 2006
  • [ $\underline{Purpose}$ ]: To evaluate the movement of surgical clips implanted in breast tumor bed during normal breathing. $\underline{Materials\;and\;Methods}$: Seven patients receiving breast post-operative radiotherapy were selected for this study. Each patient was simulated in a common treatment position. Fluoroscopic images were recorded every 0.033 s, 30 frames per 1 second, for 10 seconds in anterior to posterior (AP), lateral, and tangential direction except one patient's images which were recorded as a rate of 15 frames per second. The movement of surgical clips was recorded and measured, thereby calculated maximal displacement of each clip in AP, lateral, tangential, and superior to inferior (SI) direction. For the comparison, we also measured the movement of diaphragm in SI direction. $\underline{Results}$: From AP direction's images, average movement of surgical clips in lateral and SI direction was $0.8{\pm}0.5\;mm$ and $0.9{\pm}0.2\;mm$ and maximal movement was 1.9 mm and 1.2 mm. Surgical clips in lateral direction's images were averagely moved $1.3{\pm}0.7\;mm$ and $1.3{\pm}0.5\;mm$ in AP and SI direction with 2.6 mm and 2.6 mm maximal movement in each direction. In tangential direction's images, average movement of surgical clips and maximal movement was $1.2{\pm}0.5\;mm$ and 2.4 mm in tangential direction and $0.9{\pm}0.4\;mm$ and 1.7 mm in SI direction. Diaphragm was averagely moved $14.0{\pm}2.4\;mm$ and 18.8 mm maximally in SI direction. $\underline{Conclusion}$: The movement of clips caused by breathing was not as significant as the movement of diaphragm. And all surgical clip movements were within 3 mm in all directions. These results suggest that for breast radiotherapy, it may not necessary to use breath-holding technique or devices to control breath.