• 제목/요약/키워드: mean-squared error

검색결과 716건 처리시간 0.026초

비선형 회귀분석, 인공신경망, 구조방정식을 이용한 지방부 4지 신호교차로 교통사고 예측모형 성능 비교 연구 (A Comparative Study On Accident Prediction Model Using Nonlinear Regression And Artificial Neural Network, Structural Equation for Rural 4-Legged Intersection)

  • 오주택;윤일수;황정원;한음
    • 대한교통학회지
    • /
    • 제32권3호
    • /
    • pp.266-279
    • /
    • 2014
  • 도로의 안전성을 평가하기 위한 방법으로서 교통사고 자료를 이용하는 방법, 사전-사후평가를 통한 방법 또는 전문가 의견이나 기존 문헌을 통한 방법 등 다양한 방법들이 존재한다. 특히, 교차로 교통 안전성을 평가하는 경우 많은 연구들이 교통사고예측모형 개발을 통하여 교통사고와 관련한 원인과 안전성을 평가하고 있다. 교통사고예측모형 개발에 있어서 모형의 예측력과 전용성을 확보하는 것이 중요하다. 즉, 예측력을 확보함으로써 교통사고 건수나 교통 안전성 판단의 지표를 예측하는데 오차를 줄일 수 있고, 전용성을 확보함으로써 개발된 모형이 다른 지점이나 구간에 적용하더라도 문제없이 적용될 수 있는 대표성을 가질 수 있다. 따라서 본 연구에서는 교통사고예측모형 개발에 주로 사용되는 회귀모형과 인공신경망, 구조방정식을 이용하여 교통사고예측모형을 각각 개발하였으며, 개발될 모형의 예측력과 전용성을 평균절대오차와 평균제곱예측오차를 기준으로 확인하였다. 90개소 신호교차로의 모형개발자료를 이용하여 세 가지 방법으로 교통사고예측모형을 개발 후 개발데이터를 통해 예측력을 비교한 결과 인공신경망이 가장 높은 예측력을 보였다. 또한 모형의 전용성 검증을 위하여 별도로 수집한 33개소 신호교차로의 모형검증자료를 이용하여 개발된 모형을 검증한 결과 비선형 회귀모형이 가장 적합한 것으로 나타났다. 모형개발 과정에서 가장 높은 예측력을 보인 인공신경망의 경우 다른 대상지에서 수집된 모형검증 자료를 적용하였을 때 예측력에 큰 변화를 보여 전용성이 떨어진 것으로 분석되었다.

Landsat TM 영상과 현장조사를 이용한 잣나무림 재적 추정 (Stand Volume Estimation of Pinus Koraiensis Using Landsat TM and Forest Inventory)

  • 박진우;이정수
    • 한국지리정보학회지
    • /
    • 제17권1호
    • /
    • pp.80-90
    • /
    • 2014
  • 본 연구는 강원대학교 학술림을 대상으로 조사한 42개 표본점의 재적정보와 Landsat TM 영상으로 추출한 Remote Sensing(RS)정보를 이용하여 잣나무임분의 재적을 추정하는 것을 목표로 한다. 실험 대상 학술림 잣나무림의 ha당 평균재적은 $307.7m^3/ha$, 표준편차는 $168.4m^3/ha$이며 산출된 잣나무림 재적을 등급화하였다. TM 영상에 3 by 3 majority filtering을 수행하기 전과 후에 각각 11개의 지수를 추출하였으며, 지수별 평균 화소 값을 이용하여 선형 회귀식 도출에 필요한 독립변수를 선정하였다. 11개의 지수는 6개의 DN(밴드값, 열감지밴드인 Band6을 제외), NDVI(정규식생지수), Band Ratio(BR1:Band4/Band3, BR2:Band5/Band4, BR3:Band7/Band4), Tasseled Cap-Greeness(TC G) 1개로 구성하였다. 그 결과, 필터링 전과 후 모두 NDVI와 TC G가 회귀식에 가장 적합한 지수로 선정되었으며, $R^2$는 필터링 전과 후가 각각 0.736, 0.753로 모두 높았다. 또한, 정확도 비교를 위하여 오차검증을 실시한 결과, RMSE는 필터링 전과 후가 각각 약 $69.1m^3/ha$, 약 $67.5m^3/ha$으로 필터링 후가 낮았으며, bias는 각각 약 $-12.8m^3/ha$, 약 $9.7m^3/ha$으로 필터링 후의 편차가 적어 필터링을 실시한 회귀식이 적합한 모형으로 선정되었다. 필터링 후의 회귀식을 적용하여 추정한 임반별 재적은 총 재적이 약 $160,947m^3$이며, 평균 재적은 약 $315m^3/ha$로 실제 잣나무림의 재적보다 약 1.2배 높게 추정되었다.

자기조직화 지도를 활용한 성장모형 기반의 시장 성장패턴 지도 구축: ICT제품을 중심으로 (Development of Market Growth Pattern Map Based on Growth Model and Self-organizing Map Algorithm: Focusing on ICT products)

  • 박도형;정재권;정여진;이동원
    • 지능정보연구
    • /
    • 제20권4호
    • /
    • pp.1-23
    • /
    • 2014
  • 시장 예측은 일정 기간 동안 소비자에게 판매되는 동종 제품 또는 서비스의 수량 혹은 매출액의 규모를 추정하는 활동으로 정의할 수 있다. 정확한 시장 예측은 기업의 입장에서 새로운 제품의 도입시기 결정, 제품 설계, 생산계획 수립, 마케팅 전략 수립 등에 활용됨으로써 경영활동에 있어 효율적인 의사결정을 내릴 수 있게 하고, 정부의 입장에서는 발전 가능성이 있는 분야에 국가예산을 더 배분할 수 있는 효율적인 예산수립이 가능하게 한다. 본 연구는 정보통신기술(Information and Communication Technology: ICT) 분야의 제품 및 서비스에 대해서 과거의 시계열 자료를 이용하여 시장 성장곡선을 도출하고, 성장패턴이 비슷한 그룹으로 분류하여, 산업 내 시장에 대해 이해하고, 제품들의 미래 전망을 예측하는 데 목적이 있다. 다양한 아이템들을 통일되고 일관적인 방법으로 예측하기 위하여, 로지스틱 모형, 곰페르츠 모형, Bass 모형의 세 가지 전통적인 성장모형과 로지스틱 모형이나 곰페르츠 모형에서 도출되는 잠재시장 크기를 Bass 모형에 결합시킨 두 가지 하이브리드 성장모형을 개발하여 비교 분석하였다. 데이터 설명력이 우수한 로지스틱 + Bass 모형을 최적의 모형으로 선정하여 ICT 제품 및 서비스들 각각의 시장 성장곡선 모수를 확인하였다. 도출된 모수를 데이터로 하여, 자기조직화 지도 알고리즘을 통해, 5개의 의미 있는 영역으로 구분된 시장 성장패턴 지도가 구축되었는데, 각 영역별로 차별화된 특징과 성장패턴을 가지고 있었다. 본 연구에서 제안한 프로세스 및 시스템은 산업 시장 분석 시스템의 수요 예측 기능으로 활용될 수 있으며, ICT 산업뿐만 아니라 다양한 산업 및 분야에도 적용 가능할 것으로 기대된다.

주성분분석을 이용한 토끼 망막 신경절세포의 활동전위 파형 분류 (PCA­based Waveform Classification of Rabbit Retinal Ganglion Cell Activity)

  • 진계환;조현숙;이태수;구용숙
    • 한국의학물리학회지:의학물리
    • /
    • 제14권4호
    • /
    • pp.211-217
    • /
    • 2003
  • 주성분분석은 잘 알려진 데이터 분석 방법으로써 높은 차원의 데이터를 낮은 차원의 데이터로 표현하는데 효과적이어서 얼굴인식, 데이터 압축 등에 이용되고 있다. 주성분분석을 하게 되면 원 데이터의 공분산 행렬로부터 정규직교한 고유벡터와 해당하는 고유치를 얻게 되고 그 중 큰 값을 가지는 고유벡터 들을 선택하여 선형 변환함으로써 데이터의 차원을 줄일 수 있게 된다. 망막에 빛 자극이 인가되면 시세포 층에서 전기신호로 변환된 후 복잡한 신경회로를 거쳐 최종적으로 신경절세포 층에서 활동전위의 형태로 출력되게 된다. 본 연구에서는 다채널전극을 사용하여 여러 개 망막 신경절세포로부터 유래되는 활동전위를 기록한 후 개개의 신호를 구분하는 과정을 거치고, 이어서 그 신호를 만들어 내는 각 뉴론들끼리의 시간적, 공간적 흥분발사 패턴을 이해함으로써 궁극적으로 시각정보 인코딩 기전을 밝히려는 연구 목표하에 그 첫 단계로서 망막 신경절세포의 활동전위를 기록한 후 분류하는 과정을 성공적으로 수행하였기에 그 내용을 서술하고자 한다. 망막에서 기록되는 신경절세포 활동전위는 불규칙하고 확률적이기 때문에 주성분분석을 통하여 그 유형을 분류할 수 있었다. 토끼 눈으로부터 망막을 박리하여 망막조각을 얻은 후 신경절세포 층이 전극표면을 향하도록 전극에 부착하였다. 8${\times}$8의 microelectrode array (MEA)를 전극으로 사용하였고, 증폭기는 MEA 60 system을 사용하여 신경절세포 활동전위를 기록하였다. 활동전위 기록 후 파형 분류를 하였다. 잡음이 섞여있는 기록으로부터 신호를 검출하기 위하여, 잡음역치($\pm$3$\sigma$)를 설정하였다. 역치를 넘는 파형 만을 획득한 후 주성분분석을 통해 각 파형의 첫 번째 주성분, 두 번째 주성분을 계산하여 2차원 평면에 투사함으로써 몇 개의 의미있는 클러스터를 얻었다. 이 클러스터는 곧 각 신경절세포에서 유래되는 파형을 반영하므로 주성분분석을 통하여 망막 신경절세포의 활동전위를 각 세포별로 분류할 수 있음을 확인하였다.

  • PDF

산악기상자료와 목재평형함수율에 기반한 산림연료습도 추정식 개발 (Modeling and mapping fuel moisture content using equilibrium moisture content computed from weather data of the automatic mountain meteorology observation system (AMOS))

  • 이훈택;원명수;윤석희;장근창
    • 한국지리정보학회지
    • /
    • 제22권3호
    • /
    • pp.21-36
    • /
    • 2019
  • 본 연구는 산불 위험 예측의 주요 인자인 10시간 사연료습도(10-h FMC)를 산악기상관측망 기상자료로 추정하는 방법을 마련하기 위해 수행되었다. 안성(도심지)과 홍릉 두 지점(숲 속, 숲 밖)의 자동기상관측소에서 기상인자와 10-h FMC를 측정하고 이를 이용해 10-h FMC 추정식을 도출했다. 도출한 추정식을 이용해 지난 6년간(2013~2018년) 산불발생 다발일의 10-h FMC를 분석하고 전국 10-h FMC 지도를 제작했다. 기상인자(기온, 풍속, 목재평형함수율, 강우량)와 10-h FMC의 회귀분석 결과 목재평형함수율이 가장 효율적으로 10-h FMC를 설명했음을 확인했다. 목재평형함수율을 이용해 도출한 10-h FMC 추정식은 모형 적합과 검증과정 모두에서 높은 적합도를 보였다. 각 연구지의 추정식을 서로 다른 연구지에 적용하면 모형의 적합도가 같은 연구지에서 만든 식을 적용했을 때보다 줄어들었지만 여전히 만족할 만한 결과를 보였다. 본 연구의 회귀식은 10-h FMC와 목재평형함수율 사이 강우 후 건조반응 차이와 식생 유무가 10-h FMC에 미치는 영향을 반영하지 못해 적합도가 줄어든 것으로 나타났다. 마지막으로 도출한 추정식을 사용한 공간분석을 통해 지난 6년간 산불발생 다발일의 산불 중 70% 이상이 10.5% 이하의 10-h FMC 조건에서 발생했음을 확인했다. 본 연구 결과는 산악기상관측망과 연계하여 전국 산지의 10-h FMC를 추정하는 데 사용할 수 있다. 10-h FMC는 산불 위험 예측 기초 연구 자료로 활용되어 재해 관련 국가 정책 결정에 기여할 것으로 판단된다.

지능형 변동성트레이딩시스템개발을 위한 GARCH 모형을 통한 VKOSPI 예측모형 개발에 관한 연구 (A Study on Developing a VKOSPI Forecasting Model via GARCH Class Models for Intelligent Volatility Trading Systems)

  • 김선웅
    • 지능정보연구
    • /
    • 제16권2호
    • /
    • pp.19-32
    • /
    • 2010
  • 학계와 금융파생상품 가격결정이나 변동성매매와 같은 실무영역 모두에서 주식시장의 변동성은 중요한 역할을 한다. 본 연구는 GARCH 모형에 기초하여 한국주식시장의 변동성을 정확히 예측함으로써 변동성매매시스템의 성과를 높일 수 있는 새로운 방법을 제시하였다. 특히, 여러 연구 자료에서 밝혀지고 있는 변동성 비대칭성개념을 도입하였다. 최근 새로 개발된 한국주식시장 변동성 지수인 VKOSPI를 변동성 대용값으로 사용한다. VKOSPI는 KOSPI 200 지수옵션의 가격을 이용하여 계산된 값으로서 옵션딜러들의 변동성 예측치를 반영하고 있다. KOSPI 200 옵션시장은 1997년 시작되었으며, 발전을 거듭하여 현재 하루 거래량이 1,000만 계약을 넘어서면서 세계 최고의 지수옵션시장으로 발전하였다. 이러한 옵션시장에 반영된 변동성을 분석하는 것은 투자자들에게 좋은 투자정보를 제공하게 될 것이다. 특히, 변동성 대용값으로 VKOSPI를 사용하면 다른 변동성 대용치를 사용할 때 발생하는 통계적 추정의 문제를 피해 갈 수 있다. 본 연구는 2003년부터 2006년의 KOSPI 200 지수 일별자료를 대상으로 최우도추정방법(MLE)을 이용하여 GARCH 모형을 추정한다. 비대칭 GARCH 모형으로는 Glosten, Jagannathan, Runke의 GJR-GARCH 모형, Nelson의 EGARCH 모형, 그리고 Ding, Granger, Engle의 PARCH모형을 포함하며 대칭 GARCH 모형은 (1, 1) GARCH 모형을 이용한다. 2007년부터 2009년까지의 KOSPI 200 지수 일별자료를 대상으로 반복적 계산과정을 통해 내일의 변동성 예측값과 오르고 내리는 변화방향을 예측하였다. 분석 결과 시장변동성과 예기치 않은 주가변동 사이에는 음의 상관관계가 존재하며, 음의 주가변동은 동일한 크기의 양의 주가변동보다 훨씬 더 큰 변동성의 증가를 가져옴을 알 수 있다. 즉, 한국 주식시장에도 변동성 비대칭성이 존재함을 보여주었다. GARCH 모형을 이용하여 내일의 VKOSPI의 등락방향을 예측하고 이를 이용하여 변동성 매매시스템을 개발하였다. 내일의 변동성이 상승할 것으로 예측되면 스트래들매수전략을 이용하고 반대로 변동성이 하락할 것으로 예측되면 스트래들 매도전략을 이용한다. 변동성의 변화방향성을 맞춘 경우에는 VKOSPI 변동분을 더하고 틀린 경우에는 변동분을 뺀 누적합을 이용하여 변동성매매전략의 총수익을 계산한다. 모형추정용 자료구간의 경우 통계적 기준인 MSPE 기준으로는 PARCH 모형의 적합도가 가장 높고, 예측방향의 적중도를 재는 MCP 기준으로는 EGARCH 모형이 가장 높은 값을 보여주었다. 테스트용 자료구간의 경우에는 PARCH 모형이 모형적합도와 내일의 변동성 등락방향 예측에서 가장 좋은 결과를 보여주었다. 모형추정용 자료구간의 경우 GARCH 모형 전체에서 매매이익을 기록하고 있고 테스트용 자료구간의 경우에는 EGARCH 모형을 제외한 GARCH 모형들이 매매이익을 보여주었다. 본 연구에서 나타난 변동성의 군집과 비대칭성 현상으로부터 변동성에 비선형성이 존재함을 알 수 있었으며, 비선형성에서 좋은 결과를 보이고 있는 인공지능시스템과 비대칭 GARCH 모형을 결합한다면 제안된 변동성매매시스템의 성과를 많이 개선할 수 있을 것으로 판단된다.