The purpose of this review paper is to briefly describe main the features of novel procedures developed by the National of Standards and Technology (NIST) for the design of tall buildings. Topics considered in the paper include: the division of tasks between wind and structural engineers; the determination of wind effects with specified mean recurrence intervals by accounting for wind directionality; the risk-consistent design of structures subjected to multiple wind hazards; iterative dynamic analyses and member sizing, including the use of modern optimization approaches; and commonalities of and differences between Database-assisted Design (DAD) and Equivalent Static Wind Loads procedures. An example of the application of the DAD procedure is presented for a reinforced concrete structure. Also included in the paper is an introduction to ongoing research on the estimation of wind load factors or of augmented design mean recurrence intervals commensurate with the uncertainties in the factors that determine the wind effects.
For floating buildings may fl oat on the water for a long time, they are constantly affected by various environmental loads such as wind and wave loads. In this study to find the wave effect on the floating building, five models are designed using steel moment resisting frame. It is assumed that the lower part of the floating building is a reinforced concrete pontoon, while the upper part is a three-story steel frame. To analyze floating buildings affected by wind and wave loads, hydro-dynamic and substructure analysis are performed. As input loads, this study set limits that the mean wind velocity is 35 m/s and the significant wave height is 0.5 m for the residential building. From the hydrodynamic analysis, the time-history acceleration of building is obtained and transformed into a base ground input for a substructure analysis of the superstructure of the building. Finally the mean of the maximum from 30 dynamic analysis of the floating buildings are used to be compared with the results of the same model on the ground. It was shown that the dynamic results with wind and wave loads are not always lesser than the static results which are calculated with static equivalent wind load for a building that is located on the ground.
컨테이너 크레인은 강풍으로부터 보호를 받기 위한 차폐물이 없는 곳에 존재하기 때문에 이상 기후 조건에 취약성이 있는 구조물이다. 본 연구에서는 풍향변화에 따라 컨테이너 크레인에 작용되는 풍하중을 분석하기 위하여 수행되었다 사용된 모델은 61톤 급 컨테이너 크레인으로 현재 항만시설에 많이 사용되는 모델이다. 유동장은 원통으로 모델링하였으며, 직경 500m, 높이 200m로 설정하였다. 본 연구에서는 건축물 하중기준의 풍하중 설계기준에 따라 풍하중을 적용하였으며 풍향에 따른 영향을 분석하기 위해서 유동장을 10$^{\circ}$간격으로 분할하였다. 이를 바탕으로 CFX-10을 사용하여 전산유동해석을 수행하고 이를 통하여 얻어진 결과와 풍력실험 결과를 비교 연구함으로써, 컨테이너 크레인의 구조설계에 필요한 풍하중을 분석하였다.
컨테이너 크레인은 강풍으로부터 보호를 받기 위한 차폐물이 없는 곳에 존재하기 때문에 이상 기후 조건에 취약성이 있는 구조물이다. 본 연구에서는 풍향변화에 따라 컨테이너 크레인에 작용되는 풍하중을 분석하기 위하여 수행되었다. 사용된 모델은 61톤 급 컨테이너 크레인으로 현재 항만시설에 많이 사용되는 모델이다. 유동장은 원통으로 모델링하였으며, 직경 500m, 높이 200m로 설정하였다. 본 연구에서는 건축물 하중기준의 풍하중 설계기준에 따라 풍하중을 적용하였으며 풍향에 따른 영향을 분석하기 위해서 유동장을 $10^{\circ}$ 간격으로 분할하였다. 이를 바탕으로 CFX-10을 사용하여 전산유동해석을 수행하고 이를 통하여 얻어진 결과와 풍력실험 결과를 비교 연구함으로써, 컨테이너 크레인의 구조설계에 필요한 풍하중을 분석하였다.
Gust Factor법은 구조물의 등가정적 풍하중을 평가하는 일반적인 방법으로 구조물의 최대 응답시의 풍하중의 분포가 평균풍하중의 분포와 동일한 형상을 가진다는 가정하에 적용한다. 그러나 대스팬 구조물의 경우 평균 풍하중의 형상과 변동 풍하중의 형상이 다를 수 있어 1차모드뿐 아니라 고차모드의 영향을 고려하여 구조물의 풍응답과 풍하중을 산정하여야 한다. 본 논문에서는 등가정적 풍하중을 산정하기 위하여 현재 사용되고 있는 Gust Factor 법 (GF법), Load-response-correlation법 (LRC법)에 대해 고찰하고, Advanced Conditional Sampling 법 (ACS법)을 제안하였다. ACS법은 최대하중효과를 나타내는 순간에 선택된 풍압분포와 구조물의 동적거동에 의해 발생한 관성력을 합성하여 등가정적풍하중을 산정하는 방법이다. 최대하중 효과는 풍동실험에서 얻어진 풍압데이터를 이용하여 시간이력해석으로 평가한다. 제안된 ACS법과 기존의 GF법 및 LRC법을 지붕 구조물에 적용하여 등가정적 풍하중을 산출하고 이를 상호 비교 분석함으로써 ACS법의 유효성을 검증하고자 한다.
본 연구는 각주형 저층건축물에 작용하는 지점별 풍압을 다점동시측정시스템을 이용하여 건물 폭과 깊이변화에 따른 평균풍압분포 특성에 대한 기초적인 결과를 정리한 것이다. 본 실험에서는 건물의 폭과 깊이를 변화시킨 5개의 각주형 풍압실험모형이 사용되었으며, 풍동실험은 금오공과대학교 소재 토출식 경계층풍동에서 실시하였다. 실험결과는 저층건축물의 건물 폭 및 깊이의 변화에 따른 저층건축물의 평균풍압분포 변화경향을 건축물의 풍상면, 풍측면 및 풍하면 중심으로 특성을 분석하였다. 실험결과를 토대로 저층건축물의 구조골조 설계용 풍하중을 합리적으로 산정하기 위해 필요한 새로운 풍압계수 및 간략한 약산식을 제시하였다.
Wind load acting on a standalone structure is different from that acting on a similar structure which is surrounded by other structures in close proximity. The presence of other structures in the surrounding can change the wind flow regime around the principal structure and thus causing variation in wind loads compared to a standalone case. This variation on wind loads termed as interference effect depends on several factors like terrain category, geometry of the structure, orientation, wind incident angle, interfering distances etc., In the present study, a three building configuration is considered and the mean pressure coefficients on each face of principle building are determined in presence of two interfering buildings. Generally, wind loads on interfering buildings are determined from wind tunnel experiments. Computational fluid dynamic studies are being increasingly used to determine the wind loads recently. Whereas, wind tunnel tests are very expensive, the CFD simulation requires high computational cost and time. In this scenario, Artificial Neural Network (ANN) technique and Support Vector Regression (SVR) can be explored as alternative tools to study wind loads on structures. The present study uses these data-driven approaches to predict mean pressure coefficients on each face of principle building. Three typical arrangements of three building configuration viz. L shape, V shape and mirror of L shape arrangement are considered with varying interfering distances and wind incidence angles. Mean pressure coefficients (Cp mean) are predicted for 45 degrees wind incidence angle through ANN and SVR. Further, the critical faces of principal building, critical interfering distances and building arrangement which are more prone to wind loads are identified through this study. Among three types of building arrangements considered, a maximum of 3.9 times reduction in Cp mean values are noticed under Case B (V shape) building arrangement with 2.5B interfering distance. Effect of interfering distance and building arrangement on suction pressure on building faces has also been studied. Accordingly, Case C (mirror of L shape) building arrangement at a wind angle of 45º shows less suction pressure. Through this study, it was also observed that the increase of interfering distance may increase the suction pressure for all the cases of building configurations considered.
Numerical research on four typical configurations of noise mitigation structures and their characteristics of wind loads are reported in this paper. The turbulence model as well the model parameters, the modeling of the equilibrium atmospheric boundary layer, the mesh discretization etc., were carefully considered in the numerical model to improve the numerical accuracy. Also a numerical validation of one configuration with the wind tunnel test data was made. Through detailed analyses of the wind load characteristics with the inclined part and the wind incidence angle, it was found that the addition of an inclined part to a noise mitigation structure at-grade would affect the mean nett pressure coefficients on the vertical part, and that the extent of this effect depends on the length of the inclined part itself. The magnitudes of the mean nett pressure coefficients for both the vertical part and the inclined part of noise mitigation structure at-grade tended to increase with length of inclined part. Finally, a comparison with the wind load code British/European Standard BS EN 1991-1-4:2005 was made and the envelope of the mean nett pressure coefficients of the noise mitigation structures was given for design purposes. The current research should be helpful to improve current wind codes by providing more reasonable wind pressure coefficients for different configurations of noise mitigation structures.
Compared with traditional transmission towers, T-shaped angle towers have long cross-arms and are specially used for ultrahigh-voltage direct-current (UHVDC) transmission. Nevertheless, the wind loads of T-shaped towers have not received much attention in previous studies. Consequently, a series of wind tunnel tests on the T-shaped towers featuring cross-arms of varying lengths were conducted using the high-frequency force balance (HFFB) technique. The test results reveal that the T-shaped tower's drag coefficients nearly remain constant at different testing velocities, demonstrating that Reynolds number effects are negligible in the test range of 1.26 × 104-2.30 × 104. The maximum values of the longitudinal base shear and torsion of the T-shaped tower are reached at 15° and 25° of wind incidence, respectively. In the yaw angle, the crosswind coefficients of the tower body are quite small, whereas those of the cross-arms are significant, and as a result, the assumption in some load codes (such as ASCE 74-2020, IEC 60826-2017 and EN 50341-1:2012) that the resultant force direction is the same as the wind direction may be inappropriate for the cross-arm situation. The fitting formulas for the wind load-distribution factors of the tower body and cross-arms are developed, respectively, which would greatly facilitate the determination of the wind loads on T-shaped angle towers.
A wind turbine obtains its power input by converting the force of the wind into a torque (turning force) acting on the rotor blades. The amount of energy which the wind transfers to the rotor depends on the density of the air, the rotor area, and the wind speed. Because it has long term operating life and very complex load condition, the fatigue strength of each component must be considered. In this paper, we calculated the load condition by wind using a combined blade elemental theory and a FEM based analytical approach was use to evaluate the fatigue strength of a Hub of wind turbine. The effect of tensile mean stress was taken into account by the modified Goodman diagram. Using this approaches, we evaluated the fatigue strength of hub and main shaft and improved the design.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.