• 제목/요약/키워드: mean Ricci curvature

검색결과 25건 처리시간 0.02초

HOPF HYPERSURFACES OF THE HOMOGENEOUS NEARLY KÄHLER 𝕊3 × 𝕊3 SATISFYING CERTAIN COMMUTING CONDITIONS

  • Xiaomin, Chen;Yifan, Yang
    • 대한수학회보
    • /
    • 제59권6호
    • /
    • pp.1567-1594
    • /
    • 2022
  • In this article, we first introduce the notion of commuting Ricci tensor and pseudo-anti commuting Ricci tensor for Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3 and prove that the mean curvature of hypersurface is constant under certain assumptions. Next, we prove the nonexistence of Ricci soliton on Hopf hypersurface with potential Reeb vector field, which improves a result of Hu et al. on the nonexistence of Einstein Hopf hypersurfaces in the homogeneous nearly Kähler 𝕊3 × 𝕊3.

MONOTONICITY OF THE FIRST EIGENVALUE OF THE LAPLACE AND THE p-LAPLACE OPERATORS UNDER A FORCED MEAN CURVATURE FLOW

  • Mao, Jing
    • 대한수학회지
    • /
    • 제55권6호
    • /
    • pp.1435-1458
    • /
    • 2018
  • In this paper, we would like to give an answer to Problem 1 below issued firstly in [17]. In fact, by imposing some conditions on the mean curvature of the initial hypersurface and the coefficient function of the forcing term of a forced mean curvature flow considered here, we can obtain that the first eigenvalues of the Laplace and the p-Laplace operators are monotonic under this flow. Surprisingly, during this process, we get an interesting byproduct, that is, without any complicate constraint, we can give lower bounds for the first nonzero closed eigenvalue of the Laplacian provided additionally the second fundamental form of the initial hypersurface satisfies a pinching condition.

COMPLETE NONCOMPACT SUBMANIFOLDS OF MANIFOLDS WITH NEGATIVE CURVATURE

  • Ya Gao;Yanling Gao;Jing Mao;Zhiqi Xie
    • 대한수학회지
    • /
    • 제61권1호
    • /
    • pp.183-205
    • /
    • 2024
  • In this paper, for an m-dimensional (m ≥ 5) complete non-compact submanifold M immersed in an n-dimensional (n ≥ 6) simply connected Riemannian manifold N with negative sectional curvature, under suitable constraints on the squared norm of the second fundamental form of M, the norm of its weighted mean curvature vector |Hf| and the weighted real-valued function f, we can obtain: • several one-end theorems for M; • two Liouville theorems for harmonic maps from M to complete Riemannian manifolds with nonpositive sectional curvature.

THE STRUCTURE JACOBI OPERATOR ON REAL HYPERSURFACES IN A NONFLAT COMPLEX SPACE FORM

  • KI, U-HANG;KIM, SOO-JIN;LEE, SEONG-BAEK
    • 대한수학회보
    • /
    • 제42권2호
    • /
    • pp.337-358
    • /
    • 2005
  • Let M be a real hypersurface with almost contact metric structure $(\phi,\;\xi,\;\eta,\;g)$ in a nonflat complex space form $M_n(c)$. In this paper, we prove that if the structure Jacobi operator $R_\xi$ commutes with both the structure tensor $\phi$ and the Ricc tensor S, then M is a Hopf hypersurface in $M_n(c)$ provided that the mean curvature of M is constant or $g(S\xi,\;\xi)$ is constant.