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MONOTONICITY OF THE FIRST EIGENVALUE OF

THE LAPLACE AND THE p-LAPLACE OPERATORS

UNDER A FORCED MEAN CURVATURE FLOW

Jing Mao

Abstract. In this paper, we would like to give an answer to Problem
1 below issued firstly in [17]. In fact, by imposing some conditions on the

mean curvature of the initial hypersurface and the coefficient function of

the forcing term of a forced mean curvature flow considered here, we can
obtain that the first eigenvalues of the Laplace and the p-Laplace oper-

ators are monotonic under this flow. Surprisingly, during this process,
we get an interesting byproduct, that is, without any complicate con-

straint, we can give lower bounds for the first nonzero closed eigenvalue

of the Laplacian provided additionally the second fundamental form of
the initial hypersurface satisfies a pinching condition.

1. Introduction

The mathematical genius, Perelman, in his famous work [19] introduced a
functional, which is called F-functional, for a prescribed closed Riemannian
manifold (M, g) and a function f on M defined as follows

F(g, f) :=

∫
M

(
R+ |∇f |2

)
e−fdµ,

with R here the scalar curvature and dµ the volume element of M . Denote by
∇ and ∆ the gradient and the Laplace operators of M , respectively. For the
following coupled system{

∂
∂tgij = −2Rij ,
∂
∂tf = −∆f −R+ |∇f |2,

with the first equation the famous Ricci-Hamilton flow, he proved that the
F-functional is nondecreasing under the Ricci flow, i.e.,

d

dt
F = 2

∫
M

|Rij +∇i∇jf |2 e−fdµ ≥ 0.
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Define

λ(g) := inf
{
F(g, f)

∣∣∣ f runs over all smooth functions, and satisfies∫
M

e−fdµ = 1

}
,

and then λ(g) is the lowest eigenvalue of the operator (−4∆ + R). This fact
can be obtained easily by making a transformation u = e−f/2. Then λ(g) can
be defined equivalently as follows:

λ(g) := inf

{∫
M

(4|∇u|2 +Ru2)dµ
∣∣∣ u runs over all smooth functions, and∫
M

u2dµ = 1

}
,

which implies that λ(g) = λ1(−4∆ + R), the first eigenvalue of (−4∆ + R).
Besides, λ(g) is nondecreasing since F is nondecreasing. By using this fact,
Perelman has shown that there are no nontrivial steady or expanding breathers
on compact manifolds (see Sections 2, 3, and 4 of [19]).

From Perelman’s this work, we know that monotonicity of the first eigenvalue
of some operator related to the Laplacian under curvature flows, like the Ricci
flow, should be worthy to be investigated. Because of this, many mathemati-
cians have made efforts on this direction, and some interesting results have also
been obtained after Perelman’s pioneering work. For instance, Ma [12] studied
the first eigenvalue of the Laplace operator ∆, subject to the Dirichlet bound-
ary condition, on a compact domain, with smooth boundary in a compact or a
complete noncompact manifold, under the unnormalized Ricci-Hamilton flow,
and obtained the monotonicity of the first eigenvalue of ∆ under several as-
sumptions on the scalar curvature of the prescribed manifold therein. Cao [3]
showed that, under the Ricci flow, the eigenvalues of the operator (−∆+R/2),
with R the scalar curvature, are non-decreasing for manifolds with nonnegative
curvature operator, and then, by applying this monotonicity of the eigenval-
ues, he proved that the only steady Ricci breather with nonnegative curvature
operator is the trivial one (see Section 4 of [3]). Without assuming the nonnega-
tivity of the curvature operator, Li [11] also proved the nondecreasing property
for the eigenvalues of the operator (−∆+R/2). Cao [4] proved that, under the
unnormalized Ricci flow, the first eigenvalue of (−∆+ cR), with c ≥ 1/4 and R
the scalar curvature, is nondecreasing, which generalized his previous work [3].
Recently, Cao, Hou, and Ling [5] derived a monotonicity formula for the first
eigenvalue of the operator (−∆ + aR), with 0 < a ≤ 1/2, on closed surfaces
with the scalar curvature R ≥ 0 under the unnormalized Ricci flow.

The mean curvature flow (MCF) also has connections with the Ricci flow
which is a powerful tool to solve the 3-dimensional Poincaré conjecture. There
are surprising analogies between the Ricci flow and the MCF. Indeed, many
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results hold in a similar way for both flows, and several ideas have been success-
fully transferred from one context to the other (see, for instance, [10, Corollary
2.5], where we have used a principle, the maximum principle for tensors, appear-
ing in the Ricci flow, supplied by Hamilton, to prove the convexity-preserving
property for the curvature flow considered therein). However, at the moment
there is no formal way of transforming one of them into the other.

Because of the deep connection between the MCF and the Ricci flow, it is
natural to ask whether or not we could derive monotonicity formulas for the
first eigenvalue of some geometric operators related to the Laplacian under the
MCF or some other deformations of the MCF, like the volume-preserving MCF,
the area-preserving MCF, the forced MCF (MCF with a prescribed forcing
term), etc. Recently, under several assumptions on the mean curvature of a
given closed Riemannian manifold, Zhao [23] proved that the first eigenvalue
of the p-Laplacian on the manifold is nondecreasing along powers of the mth
MCF (see, e.g., [2] for the basic information on this flow). This provides us
the feasibility of trying to derive the monotonicity of the first eigenvalue of the
Laplacian or the p-Laplacian under curvature flows.

Denote by M0 a compact and strictly convex hypersurface of dimension
n ≥ 2, without boundary, smoothly embedded in the Euclidean space Rn+1 and
represented locally by a diffeomorphism X0 : U ⊂ Rn → X0(U) ⊂M0 ⊂ Rn+1.
Consider that M0 evolves along the forced MCF defined as follows:{ ∂

∂tX(x, t) = −H(x, t)~v(x, t) + κ(t)X(x, t), x ∈Mn
0 , t > 0,

X(·, 0) = X0,
(1.1)

with ~v(x, t) the outer unit normal vector of Mt = Xt(M0) at X(x, t) = Xt(x),
H the mean curvature of Mt, and κ(t) a continuous function of t. Li, Mao and
Wu [10] proved that the convexity is preserving as the case of MCF, and the
evolving convex hypersurfaces may shrink to a point in finite time if the forcing
term is small, or exist for all time and expand to infinity if it is large enough
(see [10, Theorem 1.1] or Theorem 2.1 here for the precise statement). In fact,
the forced MCF (1.1) can be obtained by adding a forcing term in direction
of the position vector to the classical MCF (only when the ambient space is a
Euclidean space), and this type of forced (or forced hyperbolic) mean curvature
flows has been studied in [10, 13, 14, 18] with some interesting results on the
convergence or the long time existence obtained.

As pointed out in [10], the tangent component of X(x, t) does not affect the
behavior of the evolving hypersurface, but usually the normal component of
X(x, t) is not a unit normal vector, which leads to the fact that the flow (1.1)
differs from the classical MCF. Readers can find that the convergent situation
of our flow (1.1) is more complicated than that of the MCF even if the initial
hypersurface is a sphere (see Remark 2.2). In fact, it can be seen as an extension
of the MCF, since the flow (1.1) degenerates to be the MCF if κ(t) ≡ 0.

Based on the result concerning the convergence or the long time existence we
have obtained in [10], and the fact that Zhao can get a monotonicity formula
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for the first eigenvalue of the p-Laplacian under powers of the mth MCF in
[23], we might consider the following problem.

Problem 1. For a compact and strictly convex hypersurface M0 of dimension
n ≥ 2, without boundary, which is embedded smoothly in Rn+1 and can be
represented locally by a diffeomorphism X0 : U ⊂ Rn → X0(U) ⊂M0 ⊂ Rn+1,
could we derive a monotonicity formula for the first eigenvalue of the Laplace
and the p-Laplace operators on Mt under the forced MCF defined by (1.1)?

Several eigenvalue problems have been studied by the author in [6, 15–17]
and some interesting conclusions have been obtained therein. This experience
somehow supplies the possibility to answer the above Problem 1. In fact, based
on the main conclusions for the flow (1.1) in [10], we can give an answer to this
problem (see Theorem 5.1 for the details).

As mentioned in the Abstract, during the process of trying to get the mono-
tonicity of the first non-zero closed eigenvalue, we can obtain an interesting
byproduct, which somehow reveals the convergence or expansion of the evolv-
ing hypersurfaces under the flow (1.1) from the aspect of eigenvalues. As in
Section 2, denote by H the mean curvature, hij and gij the components of the
second fundamental form and the Riemannian metric of the prescribed mani-
fold, respectively. By imposing a pinching condition for the second fundamental
form of the initial hypersurface, we can prove the following.

Theorem 1.1. If, in addition, there exist positive constants α1, α2, . . . , αn
such that the initial hypersurface M0 satisfies

hij = αiHgij , where

n∑
i=1

αi = 1 and

∣∣∣∣αi − 1

n

∣∣∣∣ ≤ ε(1.2)

for small enough ε only depending on n, then under the flow (1.1) we have

λ1(t) ≥ e−2
∫ t
0
κ(τ)dτ · λ1(0)

for any 0 ≤ t < Tm, where, of course, λ1(0) and λ1(t) are the first nonzero
closed eigenvalues of the Laplace operator on M0 and Mt respectively, and Tm
is defined by (3.7).

Remark 1.2. For an n-dimensional compact, connected and oriented Riemann-
ian manifold (M, g) without boundary isometrically immersed in Rn+1, it is
said to be almost-umbilical if there exists θ ∈ (0, 1) such that ‖A − cg‖∞ ≤ ε
for a positive constant c, with ε small enough depending on n, c and θ, where A
is the second fundamental form of M . So, clearly, if the initial hypersurface M0

satisfies the pinching condition (1.2), then it is almost-umbilical. A well-known
result states that a totally umbilical hypersurface of Rn+1 which is not totally
geodesic is a round sphere. Clearly a totally umbilical hypersurface of Rn+1

must be almost-umbilical with c = H/n. However, an almost-umbilical hyper-
surface of Rn+1 may not be totally umbilical. For instance, considering a sphere
with ideal elasticity in R3, and orthogonally and very slightly squashing this
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sphere at a pair of antipodal points such that the new geometric object (might
be an ellipsoid) obtained by this deformation satisfies the almost-umbilical con-
dition. In this case, the deformation of the sphere might be ignored but it do
has deformation. Therefore, it is natural to ask if and how the almost-umbilical
hypersurfaces are “close” to round spheres. In fact, there are many interesting
conclusions walking on this direction. For instance, Shiohama and Xu [21, 22]
proved that almost-umbilical hypersurfaces of Euclidean space are homeomor-
phic to the sphere if imposing a condition on Betti numbers. Recently, Roth
[20] proved that an n-dimensional compact, connected and oriented almost-
umbilical Riemannian manifold M without boundary isometrically immersed
in Rn+1 is diffeomorphic and θ-quasi-isometric to Sn( 1

c ), i.e., there exists a dif-

feomorphism F from M into Sn( 1
c ) such that, for any x ∈M and any unitary

vector X ∈ TxM , we have
∣∣|dxF (X)|2 − 1

∣∣ ≤ θ. Hence, according to these
facts, our pinching condition (1.2) is feasible and also reasonable. Especially,
for (1.2), when αi = 1/n for each 1 ≤ i ≤ n, then the initial hypersurface M0

must be a sphere with a prescribed radius, say r0, and moreover, the evolving
hypersurface Mt must be a sphere with radius r(t) given by (2.10) (see Remark
2.2 for details). Correspondingly, λ1(t) = n/r2(t), which clearly satisfies the
conclusion of Theorem 1.1.

The paper is organized as follows. We recall some basic knowledge about the
Laplacian and the p-Laplacian in the next section. Besides, we also mention
some useful conclusions of the forced MCF (1.1). In Section 3, we give the
proofs of Theorems 3.1 and 3.3. In Section 4, by applying Theorem 3.1, we
successfully give lower bounds for the first nonzero closed eigenvalue of the
Laplace operator provided, in addition, the initial hypersurface satisfies the
pinching condition (1.2). Theorem 5.1 will be proved in the last section.

2. Preliminaries

In this section, we would like to give a brief introduction to the eigenvalue
problem first and then recall some facts about the forced MCF (1.1).

In fact, due to the related conditions, the eigenvalue problem can be classi-
fied into several types, but here we just focus on the closed eigenvalue problem.
For the consistency of the symbols, as before, let M0 be an n-dimensional com-
pact Riemannian manifold without boundary. The so-called closed eigenvalue
problem is actually to find all possible real λ such that there exists non-trivial
functions u satisfying

∆u+ λu = 0 on M0

with ∆ the Laplacian on M0, which is given by

∆u = div(∇u) =
1√

det(gij)

n∑
i,j=1

∂

∂xi

(√
det(gij)g

ij ∂u

∂xj

)
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in a local coordinate system {x1, x2, . . . , xn} of M0. Here div and ∇ denote the
divergence operator and the gradient operator on M0, respectively. Moreover,
|∇u|2 = |∇u|2g =

∑n
i,j=1 g

ij ∂u
∂xi

∂u
∂xj

, and (gij) = (gij)
−1 is the inverse of the

metric matrix. It is well-known that ∆ only has discrete spectrum in this setting
(M0 is compact without boundary). Each element in the discrete spectrum
is called the eigenvalue of the Laplacian ∆. It is easy to find that 0 is an
eigenvalue of ∆ and whose eigenfunction should be chosen to be a constant
function. By Rayleigh’s theorem and Max-min principle, together with the
fact that eigenfunctions belonging to different eigenvalues are orthogonal, we
know that the first non-zero (i.e., the lowest non-zero) closed eigenvalue λ1(M)
(λ1 for short) can be characterized by

λ1 = inf

{∫
M0
|∇u|2dµ0∫

M0
|u|2dµ0

∣∣∣u 6= 0, u ∈W 1,2(M0), and

∫
M0

udµ0 = 0

}
,(2.1)

where W 1,2(M0) is the completion of the set C∞(M0) of the smooth functions
on M0 under the Sobolev norm

‖u‖1,2 :=

(∫
M0

|u|2dµ0 +

∫
M0

|∇u|2dµ0

)1/2

,

and dµ0 denotes the volume element of M0.
Now, we would like to make an agreement. That is, for the convenience,

in the sequel we will drop the volume element for each integration appearing
below. We also make an agreement on the range of indices as follows

1 ≤ i, j, . . . ≤ n.

The p-Laplacian (1 < p <∞) is a natural generalization of the Laplace op-
erator. In fact, the so-called p-Laplacian eigenvalue problem is to consider the
following nonlinear second-order partial differential equation (PDE for short)

∆pu+ λ|u|p−2u = 0 on M0,

where, in local coordinates {x1, . . . , xn} on M0, ∆p is defined by

∆pu =
1√

det(gij)

n∑
i,j=1

∂

∂xi

(√
det(gij)g

ij |∇u|p−2 ∂u
∂xj

)
.

Similar to the case of the linear Laplace operator, ∆p has discrete spectrum
on M0 when M0 is compact. However, we do not know whether it only has
the discrete spectrum or not. This situation is different from the case of the
Laplacian, when the domain considered is bounded. Besides, the first non-zero
closed eigenvalue λ1,p(M0) (λ1,p for short) of ∆p can be characterized by

λ1,p = inf

{∫
M0
|∇u|p∫

M0
|u|p

∣∣∣u ∈W 1,p(M0), u 6= 0, and

∫
M0

|u|p−2u = 0

}
,(2.2)
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with W 1,p(M0) the completion of the set C∞(M0) under the Sobolev norm

‖u‖1,p :=

(∫
M0

|u|p +

∫
M0

|∇u|p
)1/p

.

Now, we would like to recall several evolution equations derived in [10], which
will be used to prove our main conclusions. In fact, for the unnormalized forced
MCF (1.1), we have (cf. [10, Lemma 2.2])

∂

∂t
gij = −2Hhij + 2κ(t)gij(2.3)

and

∂hij
∂t

= ∆hij − 2Hhilg
lmhmj + |A|2hij + κ(t)hij ,

∂H

∂t
= ∆H + |A|2H − κ(t)H,

(2.4)

with gij the component of the Riemannian metric on Mt, H the mean curvature
and hij , |A|2 the component and the squared norm of the second fundamental
form of Mt, respectively. Denote by Tmax the maximal existence time of the
forced MCF (1.1). In fact, the existence of Tmax > 0 can be obtained by the
fact that the flow (1.1) is a parabolic equation and which can be converted to
a second-order strictly parabolic PDE, leading to the existence of the maximal
time interval [0, Tmax) (see, for instance, [13] for a detailed explanation of this
kind of trick). In order to know more information about the flow (1.1) as
t → Tmax, as the case of the classical MCF, we have to make a rescale to this
flow. More precisely, for any t ∈ [0, Tmax), let φ(t) be a positive factor such

that the hypersurface M̃t defined by X̃(x, t) = φ(t)X(x, t) has total area equal
to |M0| (i.e., the area of M0). That is to say,

∫
M̃t

= |M0|. Differentiating this

equality with respect to t, we have

φ−1
∂φ

∂t
=

1

n

∫
Mt

H2∫
Mt

− κ(t) =
1

n
h− κ(t).(2.5)

At the same time, choosing a new time variable

t̃(t) =

∫ t

0

φ2(τ)dτ =

∫ t

0

φ2(τ),

then we have

g̃ij = φ2gij , h̃ij = φhij , H̃ = φ−1H, |Ã|2 = φ−2|A|2,

and the evolution equation (1.1) becomes{
∂
∂t̃
X̃(x, t) = −H̃ · ~̃v + 1

n h̃X̃,

X̃(·, 0) = X̃0,
(2.6)
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where h̃ = φ−2h =
∫
M̃t̃

H̃2/
∫
M̃t̃

. Clearly, we can obtain the normalized evolu-

tion equation for the metric as follows

∂g̃ij

∂t̃
=
∂t

∂t̃

∂(φ2gij)

∂t
=

2

n
h̃g̃ij − 2H̃h̃ij .(2.7)

By [10], we know there always exists a time sequence {Ti} in [0, Tmax) such
that Ti → Tmax as i→∞, and moreover the limit

lim
Ti→Tmax

φ(Ti) = Ξ(2.8)

holds (see the end of Section 4 of [10] for the detailed statement). About the
forced MCF (1.1) and its normalized flow (2.6), Li, Mao and Wu proved the
following conclusion (cf. [10, Theorem 1.1]).

Theorem 2.1. Let M0 be an n-dimensional smooth, compact and strictly con-
vex hypersurface immersed in Rn+1 with n ≥ 2. Then for any continuous
function κ(t), there exists a unique, smooth solution to evolution equation (1.1)
on a maximal time interval [0, Tmax). If additionally the following limit exists
and satisfies

lim
t→Tmax

κ(t) = κ and |κ| < +∞,

then we have
(I) If Ξ = ∞, then Tmax < ∞ and the flow (1.1) converges uniformly to

a point as t → Tmax. Moreover, the normalized equation (2.6) has a solution

X̃(x, t̃) for all times 0 ≤ t̃ ≤ ∞, and its hypersurfaces M̃(x, t̃) = M̃t̃ converge

to a round sphere of area |M0| in the C∞-topology as t̃→∞.
(II) If 0 < Ξ < ∞, then Tmax = ∞ and the solutions to (1.1) converge

uniformly to a sphere in the C∞-topology as t→∞.
(III) If Ξ = 0, then κ ≥ 0 and Tmax =∞. Moreover, if κ > 0, the solutions

to (1.1) expand uniformly to∞ as t→∞, and the limit of the rescaled solutions
to (2.6) must be a round sphere of total area |M0| if they converge to a smooth
hypersurface.

Remark 2.2. Here we want to reveal the difference between the flow (1.1) and
the MCF by an example, through which readers can find that the flow (1.1)
is not a simple and trivial extension of the classical MCF. Now, if the n-
dimensional initial hypersurface M0 is a sphere with radius r0, clearly, it can
be represented by

X0(r0, θ1, . . . , θn)

:= (r0 cos(θ1), r0 sin(θ1) cos(θ2), r0 sin(θ1) sin(θ2) cos(θ3), . . . ,

r0 sin(θ1) · · · sin(θn−1) cos(θn), r0 sin(θ1) · · · sin(θn−1) sin(θn)),

where r0 > 0 and (θ1, . . . , θn−1, θn) ∈ Sn. Then the flow (1.1) becomes{ ∂
∂tr(t) = − n

r(t) + κ(t)r(t),

r(0) = r0,
(2.9)
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since in this case the evolving hypersurfaces Mt (0 < t < Tmax) should be
spheres under the flow (1.1) and can be represented by

Xt(r0, θ1, . . . , θn)

:= (r(t) cos(θ1), rt sin(θ1) cos(θ2), r(t) sin(θ1) sin(θ2) cos(θ3), . . . ,

r(t) sin(θ1) · · · sin(θn−1) cos(θn), r(t) sin(θ1) · · · sin(θn−1) sin(θn)).

In fact, the assertion that Mt (0 < t < Tmax) is a sphere can be obtained by
the fact that the flow (1.1) can preserve the property of being totally umbilical,
i.e., hij = Hgij/n (cf. Lemma 4.3). The first equation of (2.9) is a Bernoullie
equation, and by direct computation, we can get

r(t) =

(
r20 − 2n

∫ t

0

e−2
∫ τ
0
κ(ξ)dξdτ

)1/2

· e
∫ t
0
κ(τ)dτ .(2.10)

Clearly, from (2.10) we know that the contraction or expansion of Mt depends
on κ(t) and r0, and we can also get information of Tmax by considering the first

zero-point (if exists) of the function r20 − 2n
∫ t
0
e−2

∫ τ
0
κ(ξ)dξdτ . More precisely,

if there exists some t0 < +∞ such that r20/2n =
∫ t0
0
e−2

∫ τ
0
κ(ξ)dξdτ , then we

have Tmax = t0, i.e., Mt contracts to a single point at t0; if there does not exist,
then Tmax = +∞, i.e., Mt expands to infinity. In order to let readers realize
this clearly, we would like to investigate several different κ(t) which let the flow
(1.1) have different behaviors. For instance, if we choose κ(t) = 1/(t+ 1), then
by (2.10) we have

r(t) =

(
r20 − 2n+

2n

t+ 1

)1/2

· (t+ 1).

Clearly, if 0 < r0 <
√

2n, then Tmax = r20/(2n − r20) < ∞, and Mt contracts

to a single point as t → Tmax; if
√

2n ≤ r0 < ∞, then Tmax = +∞, and Mt

expands uniformly to ∞ as t → ∞. If we choose κ(t) = −1/(t + 1), then by
(2.10) we have

r(t) =

[
r20 − 2n

(t+ 1)3

3
+

2n

3

]1/2
· 1

t+ 1
.

Clearly, no matter how much r0 is, Mt contracts to a single point as t→ Tmax

and Tmax =
3

√
1 +

3r20
2n − 1 < +∞. From these two examples, we know that

different κ(t) might let the flow (1.1) have different behaviors (i.e., contrac-
tion and expansion are all possible). However, Huisken [8] proved that an
n-dimensional smooth, compact and strictly convex hypersurface immersed in
Rn+1 with n ≥ 2 evolves under the MCF would only contract to single point
at a finite time. In fact, if M0 is a sphere which can be represented as above,
then the MCF should become{ ∂

∂tr(t) = − n
r(t) ,

r(0) = r0.
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So, r(t) =
√
r20 − 2nt and the maximal time is Tmax =

r20
2n . Clearly, even in this

special setting (i.e., the initial hypersurface is a sphere), the situation of our
flow (1.1) is more complicated than that of the MCF. Hence, the flow (1.1) can-
not be seen as a simple extension of the MCF. From the above argument, one
can realize that one needs to study the function κ(t) and might also (if needed)
the diameter (or equivalently, the mean curvature) of the initial hypersurface if
he or she wants to investigate behaviors of the evolving hypersurfaces under the
flow (1.1), and this difficulty has been solved in [10] by successfully finding a
breakthrough, i.e., discussing the limit Ξ determined by (2.8), which in essence
has relation with κ(t) and the mean curvature of the initial hypersurface. How-
ever, in the case of the classical MCF, this problem does not exist. One cannot
get Theorem 2.1 only by applying Huisken’s method (i.e., Lp-estimate) in [8].
In fact, to prove Theorem 2.1, except the Lp-estimate tool, one might also have
to use other tools introduced in [1, 9] (see [10] for the details).

However, the above process might only works for this special case (i.e., the
initial hypersurface is a sphere) in which we can compute Xt directly. Actually,
even in this special case when κ(t) is complicated, for instance, choose κ(t) =√√√√

1 + 1
t+4

√
1
t+3

√
1
t+2

√
1
t+1 , then it is not easy to compute directly. Of course, in this

case, we might get the numerical value of Tmax = t0 <∞ (if exits) by software
once r0 and n are given. Therefore, it should be interesting to know how Mt

behaves and Tmax once κ(t) is given and the initial hypersurface M0 is not so
special as above. Theorem 2.1 can supply us this possibility. In fact, if κ(t) is
given, then the rescaled factor φ(t) might be solved by (2.5) (if feasible), and
then applying Theorem 2.1 the behavior of Mt and the information of Tmax

can be known.

3. Evolution equations for the first eigenvalues of the Laplace and
the p-Laplace operators

In this section, based on the evolution equations mentioned in Section 2, we
would like to derive evolution equations for the first eigenvalues of the Laplacian
and the p-Laplacian as follows.

Theorem 3.1. Let λ1(t) be the first non-zero closed eigenvalue of the Lapla-
cian on an n-dimensional compact and strictly convex hypersurface Mt which
evolves by the forced MCF (1.1), and let u be the normalized eigenfunction
corresponding to λ1, i.e., −∆u = λ1u and

∫
Mt

u2 = 1. Then we have

d

dt
λ1(t) = −2λ1κ(t) + 2

∫
Mt

Hhij∇iu∇ju+ 2

∫
Mt

uH∇ihij∇ju.(3.1)

Similarly, under the normalized flow (2.6), we have

d

dt̃
λ̃1(t̃) = −2h̃

n
· λ̃1(t̃) + 2

∫
M̃t̃

H̃ · h̃ij∇iu∇ju+ 2

∫
M̃t̃

uH̃∇ih̃ij∇ju,
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where λ̃1(t̃) is the first non-zero closed eigenvalue of the Laplacian on the

rescaled hypersurface M̃t̃.

Proof. Let u be an eigenfunction of the first non-zero closed eigenvalue λ1 of
∆ on the evolving compact hypersurface Mt. For simplicity, we normalize the
function u, i.e.,

∫
Mt

u2 = 1. By (2.1), we know that u also satisfies

−∆u = λ1u, where

∫
Mt

u = 0.

Clearly, we have

− ∂

∂t
(∆u) =

(
d

dt
λ1

)
u+ λ1

∂u

∂t
(3.2)

by taking derivatives with respect to t for the above equation. By multiplying
u to both sides of (3.2) and then integrating over Mt, we have

−
∫
Mt

u
∂

∂t
(∆u) =

(
d

dt
λ1

)∫
Mt

u2 + λ1

∫
Mt

u
∂u

∂t
.

Therefore, we can obtain

d

dt
λ1 = −

∫
Mt

u
∂

∂t
(∆u)− λ1

∫
Mt

u
∂u

∂t
.(3.3)

Hence, if we want to get the evolution equation of λ1, we need to derive the
evolution equation of ∆u under the flow (1.1). First, by (2.3) we have

∂

∂t
gij = −gim

(
∂

∂t
gmq

)
gqj

= 2gim [Hhmq − κ(t)gmq] g
qj

= 2Hgimhmqg
qj − 2κ(t)gij ,

which implies

∂

∂t
(∆u) =

∂

∂t

(
gij∇i∇ju

)
=

∂

∂t
(gij)∇i∇ju+ gij

∂

∂t
(∇i∇ju)

= 2
[
Hgimhmqg

qj − κ(t)gij
]
∇i∇ju+ gij

∂

∂t

(
∂2u

∂xi∂xj
− Γmij

∂u

∂xm

)
= 2Hgimhmqg

qj∇i∇ju− 2κ(t)∆u+ ∆
∂u

∂t
− gij ∂

∂t

(
Γmij
) ∂u

∂xm
.(3.4)

On the other hand, we have

gij
∂

∂t

(
Γmij
)

=
1

2
gijgml

(
∇i
∂gjl
∂t

+∇j
∂gil
∂t
−∇l

∂gij
∂t

)
=

1

2
gijgml

{
∇i [−2Hhjl + 2κ(t)gjl] +∇j [−2Hhil + 2κ(t)gil]
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−∇l [−2Hhij + 2κ(t)gij ]
}

= − 2∇iH · gijgmlhjl.

Substituting the above equality into (3.4) results in

∂

∂t
(∆u) = 2Hgimhmqg

qj∇i∇ju− 2κ(t)∆u+ ∆
∂u

∂t
(3.5)

+ 2∇iH · gijgmlhjl
∂u

∂xm
.

By substituting (3.5) into (3.3), and then integrating by parts, we have

d

dt
λ1 = −

∫
Mt

u

[
2Hgimhmqg

qj∇i∇ju− 2κ(t)∆u+ ∆
∂u

∂t
+ 2∇iH · gijgmlhjl∇mu

]
− λ1

∫
Mt

u
∂u

∂t

= 2

∫
Mt

Hhij∇iu∇ju− 2λ1κ(t)−
∫
Mt

u

(
∆
∂u

∂t

)
− λ1

∫
Mt

u
∂u

∂t

= − 2λ1κ(t) + 2

∫
Mt

Hhij∇iu∇ju+ 2

∫
Mt

uH∇ihij∇ju,(3.6)

where hij = gimhmqg
qj . Here the last equality in (3.6) holds since∫

Mt

u

(
∆
∂u

∂t

)
=

∫
Mt

∆u
∂u

∂t
= −λ1

∫
Mt

u
∂u

∂t
.

This completes the proof of (3.1).
Similarly, under the normalized flow (2.6), we can obtain

d

dt̃
λ1(t̃) = −2h̃

n
· λ1(t̃) + 2

∫
M̃t̃

H̃ · h̃ij∇iu∇ju+ 2

∫
M̃t̃

uH̃∇ih̃ij∇ju,

since the evolution equations (2.3) and (2.7) almost have the same form except

the function κ(t) replaced by h̃/n with h̃ = φ−2h =
∫
M̃t̃

H̃2/
∫
M̃t̃

. �

Remark 3.2. Here we want to emphasize one thing, that is, we need to require
that Mt should be compact on a prescribed time interval, since the compactness
of Mt can assure the existence of the eigenvalues of the Laplace and the p-
Laplace operators. This implies that it cannot be avoided investigating the
evolving behavior of the forced flow (1.1). In fact, by Theorem 2.1, we know
that it is feasible to consider the evolution equation (3.1) of the first nonzero
closed eigenvalue of the Laplace operator on [0, Tm) with Tm defined by

Tm =

{
Tmax, if 0 < Ξ ≤ ∞,
T < Tmax, if Ξ = 0,

(3.7)

where Ξ is the limit given by (2.8) and [0, Tmax) corresponds to the maximal
time interval of the flow (1.1). Clearly, on [0, Tm), the evolving hypersurface
Mt is compact.
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In the case of the p-Laplace operator, since we do not know whether the
first nonzero closed eigenvalue λ1,p(t) of ∆p is differentiable under the forced
flow (1.1) or not, it seems like that we cannot use a similar method to that of
the proof of Theorem 3.1. However, in fact, we can use a similar method to
the one in [3,4] to avoid discussing the differentiation of λ1,p(t) under the flow
(1.1). More precisely, on the time interval [0, Tm) where the flow (1.1) exists
and Mt is compact, we can define a smooth function λ1,p(u, t) as follows

λ1,p(u, t) := −
∫
Mt

∆pu(x, t) · u(x, t)dvt =

∫
Mt

|∇u|pdvt,(3.8)

where u(x, t) is an arbitrary smooth function satisfying∫
Mt

|u(x, t)|p = 1 and

∫
Mt

|u(x, t)|p−2u(x, t) = 0.(3.9)

Clearly, for any t ∈ [0, Tm), if, furthermore, u(x, t) is the eigenfunction of the
first eigenvalue λ1,p(t), then, by (3.9), we have

λ1,p(u, t) = −
∫
Mt

∆pu(x, t) · u(x, t) = λ1,p(t)

∫
Mt

|u(x, t)|p = λ1,p(t).

Now, by using the function λ1,p(u, t) defined by (3.8), we can prove the
following result.

Theorem 3.3. Let λ1,p(t) be the first non-zero closed eigenvalue of the p-
Laplacian (1 < p < ∞) on an n-dimensional compact and strictly convex
hypersurface Mt which evolves by the forced MCF (1.1), and let u be the eigen-
function of λ1,p(t) at time t ∈ [0, Tm) satisfying

∫
Mt

up = 1, where Tm is defined

by (3.7). Let λ1,p(u, t) be the smooth function defined by (3.8). Then at time t
we have

d

dt
λ1,p(u, t) = − pκ(t)λ1,p(t) + p

∫
Mt

|∇u|p−2Hhij∇iu · ∇ju(3.10)

+ 2

∫
Mt

|∇u|p−2uH∇ihij∇ju.

Similarly, under the normalized flow (2.6), we have

d

dt̃
λ̃1,p(u, t̃) = − ph̃

n
· λ̃1,p(t̃) + p

∫
M̃t̃

|∇u|p−2H̃ · h̃ij∇iu · ∇ju

+ 2

∫
M̃t̃

|∇u|p−2uH̃∇ih̃ij∇ju

at time t̃ ∈ [0, T̃m). Here T̃m :=
∫ Tm

0
φ2(s)ds with φ(t) the rescaled factor

determined by (2.5). Moreover, λ̃1,p(t̃) is the first nonzero closed eigenvalue

of the p-Laplacian on the rescaled hypersurface M̃t̃, and λ̃1,p(u, t̃) is a smooth
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function defined by

λ̃1,p(u, t̃) := −
∫
M̃t̃

∆pu(x, t̃) · u(x, t̃),

where u(x, t̃) is an arbitrary smooth function satisfying∫
M̃t̃

|u(x, t̃)|p = 1 and

∫
M̃t̃

|u(x, t̃)|p−2u(x, t̃) = 0.

Proof. Taking derivatives with respect to t on both sides of (3.8), we have

− d

dt
λ1,p(u, t) =

d

dt

∫
Mt

u∆pudvt.(3.11)

For convenience in the computation below, set B = |∇u|p−2, and then ∆pu =
div[B(∇u)]. Furthermore, we have

∂

∂t

∫
Mt

u∆pudvt

=
∂

∂t

∫
Mt

gij∇i[B(∇ju)]udvt

=

∫
Mt

∂

∂t

[
gij∇iB∇ju+B∆u

]
udvt +

∫
Mt

gij∇i[B(∇ju)](utdvt + u(dvt)t)

=

∫
Mt

[(
∂

∂t
gij
)
∇iB∇ju+ gij∇iBt∇ju+ gij∇iB∇jut +Bt∆u+B

∂

∂t
(∆u)

]
udvt

+

∫
Mt

gij∇i[B(∇ju)](utdvt + u(dvt)t),

where, except dvt, the subscript (·)t means taking derivative with respect to t
for the prescribed function. Substituting the corresponding evolution equations
of gij , ∆u under the flow (1.1) derived in the proof of Theorem 3.1 into the
above equality results in

∂

∂t

∫
Mt

u∆pudvt(3.12)

=

∫
Mt

u
[ (

2Hhij − 2κ(t)gij
)
∇iB∇ju+ gij∇iBt∇ju+ gij∇iB∇jut

+Bt∆u+B

(
2Hhij∇i∇ju− 2κ(t)∆u+ ∆

∂u

∂t
+ 2∇iH · him∇mu

)]
dvt

+

∫
Mt

gij∇i[B(∇ju)](utdvt + u(dvt)t)

=

∫
Mt

u
(
2Hhij − 2κ(t)gij

)
∇i(B∇ju)dvt +

∫
Mt

gij∇i(Bt∇ju)udvt

+

∫
Mt

gij∇i(B∇jut)udvt + 2

∫
Mt

Bu∇iH · him∇mudvt
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+

∫
Mt

gij∇i[B(∇ju)](utdvt + u(dvt)t)

=

∫
Mt

u
(
2Hhij − 2κ(t)gij

)
∇i(B∇ju)dvt −

∫
Mt

gijBt∇iu · ∇judvt

−
∫
Mt

gijB∇iu · ∇jutdvt + 2

∫
Mt

Bu∇iH · him∇mudvt

+

∫
Mt

gij∇i[B(∇ju)](utdvt + u(dvt)t).

Since

Bt =
∂B

∂t
=

∂

∂t
|∇u|p−2

=
∂

∂t

(
|∇u|2

) p−2
2

=
∂

∂t

(
gij∇iu∇ju

) p−2
2

= (p− 2)|∇u|p−4
[
Hhij − κ(t)gij

]
∇iu∇ju+ (p− 2)|∇u|p−4gij∇iut · ∇ju,

then substituting the above equality into (3.12) yields

∂

∂t

∫
Mt

u∆pudvt(3.13)

= 2

∫
Mt

u
[
Hhij − κ(t)gij

]
∇i(B∇ju)dvt − (p− 2)

∫
Mt

|∇u|p−2

·
[
Hhij − κ(t)gij

]
∇iu∇judvt − (p− 1)

∫
Mt

|∇u|p−2gij∇iut · ∇judvt

+ 2

∫
Mt

Bu∇iH · him∇mudvt +

∫
Mt

gij∇i[B(∇ju)](utdvt + u(dvt)t)

= − p
∫
Mt

B
[
Hhij − κ(t)gij

]
∇iu∇judvt − 2

∫
Mt

BuH∇ihij∇judvt

− (p− 1)

∫
Mt

Bgij∇iut∇judvt +

∫
Mt

gij∇i[B(∇ju)](utdvt + u(dvt)t).

By divergence theorem, we have

−(p− 1)

∫
Mt

Bgij∇iut∇judvt = (p− 1)

∫
Mt

gij∇i[B(∇ju)]utdvt.

Substituting the above equality into (3.13), we have

∂

∂t

∫
Mt

u∆pudvt = − p
∫
Mt

B
[
Hhij − κ(t)gij

]
∇iu∇judvt(3.14)

− 2

∫
Mt

BuH∇ihij∇judvt
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+

∫
Mt

gij∇i[B(∇ju)](putdvt + u(dvt)t).

If now u is the eigenfunction of the first non-zero closed eigenfunction λ1,p(t),
then, as pointed out before, we have

λ1,p(u, t) = λ1,p(t) and ∆pu = −λ1,p(t)|u|p−2u.

By applying this fact and (3.9), we can obtain

d

dt

∫
Mt

|u(x, t)|pdvt =
d

dt

∫
Mt

B ·
(
gij∇iu∇ju

)
dvt

=

∫
Mt

Bu(putdvt + u(dvt)t)

= −(λ1,p)
−1
∫
Mt

gij∇i[B(∇ju)](putdvt + u(dvt)t) = 0.

Together the above equality with (3.14), we have

∂

∂t

∫
Mt

u∆pudvt = − p
∫
Mt

B
[
Hhij − κ(t)gij

]
∇iu∇judvt(3.15)

− 2

∫
Mt

BuH∇ihij∇judvt.

By substituting (3.8) and (3.11) into (3.15), we have

d

dt
λ1,p(u, t)

= p

∫
Mt

B
[
Hhij − κ(t)gij

]
∇iu∇judvt + 2

∫
Mt

BuH∇ihij∇judvt

= p

∫
Mt

BHhij∇iu · ∇judvt + 2

∫
Mt

BuH∇ihij∇judvt − pκ(t)λ1,p(t),

which completes the proof of (3.10).
Similarly, under the normalized flow (2.5), we can obtain

d

dt̃
λ1,p(u, t̃) = p

∫
M̃t̃

|∇u|p−2H̃ · h̃ij∇iu · ∇judvt̃

+ 2

∫
M̃t̃

|∇u|p−2uH̃∇ih̃ij∇judvt̃ −
ph̃

n
· λ1,p(t̃),

which completes the second claim of Theorem 3.3. �

Remark 3.4. Since (3.10) does not depend on the particular evolution of u,
we have dλ1,p(u, t)/dt = dλ1,p(t)/dt at some time t. Clearly, at some time
t ∈ [0, Tm), (3.1) can be directly obtained by choosing p = 2 in (3.10), which
gives an explanation to the fact that the nonlinear Laplacian ∆p is an exten-
sion of the linear Laplacian ∆ from the viewpoint of the evolution equation.
Because of this, one may ask that maybe it is not necessary to derive (3.1)
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independently. However, readers can find that the way for proving (3.1) cannot
be used to derive (3.10) directly because of indeterminacy of the differentia-
bility of λ1,p(t), and we have to construct a smooth function λ1,p(u, t) defined
by (3.8) to overcome this problem. This is the reason why we separately give
evolution equations of the first eigenvalues of the Laplace and the p-Laplace
operators.

4. Lower bounds of the first eigenvalue of the Laplacian

In this section, we would like to give lower bounds for the first nonzero closed
eigenvalue of the Laplace operator if additionally the initial hypersurface M0

satisfies the pinching condition (1.2). However, first, we want to show that
this pinching condition (1.2) is preserved under the forced MCF (1.1), i.e., the
evolving hypersurface Mt also satisfies (1.2) for any t ∈ [0, Tmax). To prove
this, we need to use Hamilton’s maximum principle for tensors on manifolds
(cf. [7, Theorem 9.1]). For convenience, we prefer to list its details here.

Theorem 4.1 (Hamilton). Suppose that on 0 ≤ t < T the evolution equation

∂

∂t
Mij = ∆Mij + uk∇kMij +Nij

holds, where Nij = p(Mij , gij), a polynomial in Mij formed by contracting prod-
ucts of Mij with itself using the metric, satisfies the null-eigenvector condition
below. If Mij ≥ 0 at t = 0, then it remains so on 0 ≤ t < T .

Remark 4.2. Here we would like to make an explanation to the so-called null-
eigenvector condition. In fact, Nij = p(Mij , gij) satisfies the null-eigenvector
condition implies that for any null-eigenvector X of Mij , we have NijX

iXj ≥ 0.

By applying Theorem 4.1, we can prove the following result.

Lemma 4.3. If, in addition, the initial hypersurface M0 satisfies the pinching
condition (1.2), then the evolving hypersurface Mt remains so under the flow
(1.1) for any 0 ≤ t < Tmax.

Proof. By (1.2), we have

hij = αiHgij on M0,

that is,

αiHgij ≤ hij ≤ αiHgij on M0.

On the other hand, by (2.3) and (2.4), we have

∂

∂t
(hij − αiHgij) = ∆ (hij − αiHgij) + |A|2 (hij − αiHgij)

+ κ(t) (hij − αiHgij)− 2H
(
hilg

lmhmj − αiHhij
)
.

Now, we use Theorem 4.1 to prove Lemma 4.3. In fact, we can choose

Mij = hij − αiHgij
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and

Nij = |A|2 (hij − αiHgij) + κ(t) (hij − αiHgij)− 2H
(
hilg

lmhmj − αiHhij
)
.

Clearly, Mij ≥ 0 at t = 0. It only needs to check that Nij is nonnegative on
the null-eigenvectors of Mij . Assume that, for some vector X = {Xi}, we have

hijX
j = αiHXi.

So, we can obtain

NijX
iXj =

[
|A|2 + κ(t)

] (
αiHXiX

iαiHgijX
iXj

)
− 2H

(
hilg

lmαmHXmX
i − α2

iH
2XiX

i
)

=
[
|A|2 + κ(t)

] (
αiHXiX

i − αiHgijXiXj
)

− 2H
(
αmαlH

2glmXmXl − α2
iH

2XiX
i
)

= 0.

Hence, Mij ≥ 0 on Mt for any 0 ≤ t < Tmax, i.e., hij ≥ αiHgij for any
t ∈ [0, Tmax). Similarly, one can easily get hij ≤ αiHgij for any 0 ≤ t < Tmax.
So, we have

hij = αiHgij on Mt for 0 ≤ t < Tmax,

which implies our conclusion. �

By applying Theorem 3.1 and Lemma 4.3, we can prove Theorem 1.1 as
follows.

Proof of Theorem 1.1. By applying Theorem 3.1 and Lemma 4.3 directly, we
can obtain

d

dt
λ1(t)(4.1)

= − 2λ1κ(t)+2

∫
Mt

Hgimhmqg
qj∇iu∇ju+2

∫
Mt

uH∇i
(
gimhmqg

qj
)
∇ju

= − 2λ1κ(t)+2
[∫

Mt

HgimαmHgmqg
qj∇iu∇ju+

∫
Mt

uH∇i
(
gimαmHgmqg

qj
)
∇ju

]
≥ − 2λ1κ(t)+2

(
1

n
− ε
)∫

Mt

H2|∇u|2+2

∫
Mt

uHαj∇iH · gij · ∇ju.

On the other hand, by integrating by parts to the last term of the right hand
side of (4.1), the pinching condition (1.2) and the fact that the first nonzero
closed eigenvalue λ1(t) is always positive, we have∫

Mt

uHαj∇iH · gij · ∇ju(4.2)

= − 1

2

(∫
Mt

H2αj∇iu · gij · ∇ju+

∫
Mt

uH2αj · gij∇i∇ju
)

≥ −
(
1
n + ε

)
2

∫
Mt

H2|∇u|2 +
λ1(t)

2n

∫
Mt

u2H2
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− 1

2

∫
Mt

uH2

(
1

n
− αj

)
· gij∇i∇ju

≥ −
(
1
n + ε

)
2

∫
Mt

H2|∇u|2 +

(
1
n − 2ε

)
λ1(t)

2

∫
Mt

u2H2.

The last inequality holds since, on one hand, for 0 < t < T0 < Tmax, we
know that Mt is strictly convex (cf. [10, Corollary 2.5]) and bounded, and H
is continuous. Then H has positive maximum and minimum on Mt, which are
finite. Define Hmax(t) = maxx∈Mt

H(x, t) and Hmin(t) = minx∈Mt
H(x, t), so

min
1≤j≤n

∣∣∣∣ 1n − αj
∣∣∣∣ ·H2

min(t)λ1(t) ≤
∣∣∣∣∫
Mt

(
1

n
− αj

)
uH2gij∇i∇ju

∣∣∣∣
≤ εH2

max(t)λ1(t).

Therefore, by suitably choose ε, the equality

−
∫
Mt

(
1

n
− αj

)
uH2gij∇i∇ju ≥ −2ελ1(t)

∫
Mt

u2H2

always holds. On the other hand, by Theorem 2.1, we know that
Hmin(t)/Hmax(t) → 1 as t → Tmax (this is because Mt converges spherically
as t → Tmax). So, for sufficiently small ε > 0, there exists some δ > 0 such
that |Hmin(t)/Hmax(t) − 1| ≤ ε for Tmax − δ ≤ t < Tmax. This implies that
|
∫
Mt

u2H2/H2
max(t)−1| must be small enough for Tmax−δ ≤ t < Tmax. Hence,

by suitably choose ε, we can also get the above inequality. Now, substituting
(4.2) into (4.1) results in

d

dt
λ1(t) ≥ −2λ1κ(t) +

(
1

n
− 3ε

)∫
Mt

H2|∇u|2 +

(
1

n
− 2ε

)
λ1(t)

∫
Mt

u2H2.

Since ε is small enough, without loss of generality, choose ε� 1
3n , then we have

d

dt
λ1(t) ≥ −2λ1κ(t).(4.3)

Dividing both sides of (4.3) by λ1 and then integrating from 0 to t (0 < t < Tm),
we have

log λ1(t)− log λ1(0) ≥ −2

∫ t

0

κ(τ)dτ,

which implies the assertion of Theorem 1.1. �

Of course, under the assumption of Lemma 4.3, we can also give a lower
bound for the first eigenvalue of the Laplace operator under the normalized
flow (2.6) by repeating almost the same process as above, since from Theorem
3.1, we know that there is no essential difference between the evolution equation
of the first eigenvalue under the unnormalized flow and the corresponding one
under the normalized flow. In fact, we can easily get

λ̃1(t̃) ≥ e−2
∫ t̃
0
h̃
ndτ · λ̃1(0)
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for 0 ≤ t̃ < T̃m.
However, we cannot just repeat the above process to try to get a similar

conclusion for the p-Laplace operator when p 6= 2, since, as mentioned in
Section 3, we do not know whether λ1,p(t) is differentiable or not.

5. Monotonicity of the first eigenvalues of the Laplacian and the
p-Laplacian

By applying Theorems 3.1 and 3.3, we can easily obtain the following mono-
tonicity for the first eigenvalue.

Theorem 5.1. Let Mt, λ1(t), λ̃1(t̃), λ1,p(t), and λ̃1,p(t̃) be defined as in The-

orems 3.1 and 3.3. Let Tm be defined by (3.7), and let T̃m be defined as in
Theorem 3.3. Denote by Hmax(0) and Hmin(0) the maximal and the minimal
values of the mean curvature on the initial hypersurface M0, respectively. As-
sume that M0 satisfies the pinching condition (1.2). Then we have

(I) If

e−2
∫ t
0
κ(τ)dτ

[
H−1max(0)− 2Hmax(0)

∫ t
0
e−2

∫ τ
0
κ(s)dsdτ

Hmax(0)

]−1
≤ nκ(t)

for 0 ≤ t < Tm, then λ1(t) is non-increasing for 0 ≤ t < Tm under the flow
(1.1), and λ1,p(t) is non-increasing and differentiable almost everywhere for
0 ≤ t < Tm under the flow (1.1). If

e−2
∫ t
0
κ(τ)dτ

[
H−1min(0)− 2Hmin(0)

∫ t
0
e−2

∫ τ
0
κ(s)dsdτ

nHmin(0)

]−1
≥ nκ(t)

for 0 ≤ t < Tm, then λ1(t) is nondecreasing for 0 ≤ t < Tm under the flow
(1.1), and λ1,p(t) is nondecreasing and differentiable almost everywhere for
0 ≤ t < Tm under the flow (1.1).

(II) If

e−2
∫ t̃
0
h̃
ndτ

[
H−1max(0)− 2Hmax(0)

∫ t̃
0
e−2

∫ τ
0
h̃
ndsdτ

Hmax(0)

]−1
≤ h̃

for 0 ≤ t̃ < T̃m, then λ̃1(t̃) is non-increasing under the normalized flow (2.6),

and λ̃1,p(t̃) is non-increasing and differentiable almost everywhere under the
normalized flow (2.6). If

e−2
∫ t̃
0
h̃
ndτ

[
H−1min(0)− 2Hmin(0)

∫ t̃
0
e−2

∫ τ
0
h̃
ndsdτ

nHmin(0)

]−1
≥ h̃

for 0 ≤ t̃ < T̃m, then λ̃1(t̃) is nondecreasing under the normalized flow (2.6),

and λ̃1,p(t̃) is nondecreasing and differentiable almost everywhere under the
normalized flow (2.6).
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Proof. By (2.4) and the fact that the convexity is preserved under the forced
MCF (1.1), that is, Mt is convex (cf. [10, Corollary 2.5]), we have

∂H

∂t
= ∆H + |A|2H − κ(t)H

≤ ∆H +H3 − κ(t)H.

Let ρ(t) be the solution of the initial value problem{ d
dtρ(t) = ρ3(t)− κ(t)ρ(t),

ρ(0) = Hmax(0) := max
x∈M0

H(x, 0).

By applying the maximum principle to the function H(x, t) − ρ(t), we can
obtain

H(x, t) ≤ ρ(t) = e−
∫ t
0
κ(τ)dτ

[
H−1max(0)− 2Hmax(0)

∫ t
0
e−2

∫ τ
0
κ(s)dsdτ

Hmax(0)

]−1/2
.

Similarly, by (2.4) we have

∂H

∂t
= ∆H + |A|2H − κ(t)H

≥ ∆H +
H3

n
− κ(t)H.

Let σ(t) be the solution of the initial value problem{ d
dtσ(t) = σ3(t)− κ(t)σ(t),

σ(0) = Hmin(0) := min
x∈M0

H(x, 0).

By applying the maximum principle to the function H(x, t) − σ(t), we can
obtain

H(x, t) ≥ σ(t) = e−
∫ t
0
κ(τ)dτ

[
H−1min(0)− 2Hmin(0)

∫ t
0
e−2

∫ τ
0
κ(s)dsdτ

nHmin(0)

]−1/2
.

From the proof of Theorem 1.1, we know that once the initial hypersurface M0

satisfies the pinching condition (1.2), Mt remains so and

d

dt
λ1(t) ≥ −2λ1κ(t) +

(
1

n
− 3ε

)∫
Mt

H2|∇u|2 +

(
1

n
− 2ε

)
λ1(t)

∫
Mt

u2H2.

Hence, we have

d

dt
λ1(t) ≥ − 2λ1κ(t) + σ2

[(
1

n
− 3ε

)∫
Mt

|∇u|2 +

(
1

n
− 2ε

)
λ1(t)

∫
Mt

u2
]

= 2λ1 ·
[
−κ(t) +

(
1

n
− 5

2
ε

)
σ2

]
,

which implies that λ1(t) is non-decreasing under the flow (1.1) provided σ2 ≥
nκ(t).
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On the other hand, similar to the proof of Theorem 1.1, one can easily get

d

dt
λ1(t) ≤ −2λ1κ(t) + 2

(
1

n
+ ε

)∫
Mt

H2|∇u|2 + 2

∫
Mt

uHαj∇iH · gij · ∇ju

and∫
Mt

uHαj∇iH · gij · ∇ju ≤ −
(
1
n − ε

)
2

∫
Mt

H2|∇u|2 +

(
1
n + 2ε

)
λ1(t)

2

∫
Mt

u2H2

by applying Theorem 3.1 and Lemma 4.3, and suitably choosing ε. Combining
the above two inequalities yields

d

dt
λ1(t) ≤ −2λ1κ(t) + ρ2

[(
1

n
+ 3ε

)∫
Mt

|∇u|2 +

(
1

n
+ 2ε

)
λ1(t)

∫
Mt

u2
]

= 2λ1 ·
[
−κ(t) +

(
1

n
+

5

2
ε

)
ρ2
]
,

which implies that λ1(t) is non-increasing under the flow (1.1) provided ρ2 ≤
nκ(t).

Now, for the case of the p-Laplacian, by Lemma 4.3, if the evolving hyper-
surface Mt satisfies (1.2), Mt remains so. Then, together with Theorem 3.3
and similar to the proof of Theorem 1.1, at some time t0 ∈ [0, Tm) we have

d

dt
λ1,p(u, t)

≥ − pλ1,p(t)κ(t) + σ2

{[
p−1

n
−(p+1)ε

] ∫
Mt

|∇u|p+

(
1

n
−2ε

)
λ1,p(t)

∫
Mt

up
}

= p · λ1,p(t) ·
[
−κ(t) +

(
1

n
− p+ 3

p
ε

)
σ2

]
at the time t0, which implies that

d

dt
λ1,p(u, t)

∣∣∣
t=t0
≥ 0

provided σ2 ≥ nκ(t). Since λ1,p(u, t) defined by (3.8) is a smooth function with
respect to t, then, for any sufficiently small number ξ > 0, we have

d

dt
λ1,p(u, t) ≥ 0

on the interval [t0 − ξ, t0]. Integrating the above inequality on [t0 − ξ, t0], we
can obtain

λ1,p(u(·, t0 − ξ), t0 − ξ) ≤ λ1,p(u(·, t0), t0).(5.1)

By the definition (3.8) of λ1,p(u, t), we know that λ1,p(u(·, t0), t0) = λ1,p(t0)
and λ1,p(u(·, t0 − ξ), t0 − ξ) ≥ λ1,p(t0 − ξ) at time t0. Together this fact with
(5.1), we have

λ1,p(t0 − ξ) ≤ λ1,p(t0)
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for sufficiently small ξ > 0. It follows that λ1,p(t) is monotone non-decreasing
under the flow (1.1), since t0 can be chosen arbitrarily. The fact that λ1,p(t)
is differentiable everywhere on [0, Tm) can be derived by applying the classi-
cal Lebesgue’s theorem. Similarly, if ρ2 ≤ nκ(t), then λ1,p(t) is monotone
non-increasing and differentiable everywhere under the flow (1.1). The second
assertion (II) of Theorem 5.1 for the normalized flow can be obtained by almost
the same process. �

Remark 5.2. It is surprising that λ1(t) and λ1,p(t) have the same monotonicity
under the same assumptions, and one may think that it is not necessary to
derive the monotonicity of λ1(t) independently, since λ1(t) is only a special
case of λ1,p(t), i.e., λ1,p(t) = λ1(t) when p = 2. However, readers can find
that one cannot use the way for proving the monotonicity of λ1(t) to get the
monotonicity of λ1,p(t) directly (see the proof of Theorem 5.1 in Section 5).

Besides, by applying Theorem 2.1, we can know more about T̃m. More precisely,
we can obtain: if Ξ =∞ with Ξ defined by (2.8), then Tm <∞, and φ(t)→∞
as t → Tmax, which implies T̃m =

∫ Tmax

0
φ2(s)ds = ∞; if 0 < Ξ < ∞, then

Tmax = ∞, which implies T̃m =
∫∞
0
φ2(t)dt; if Ξ = 0, then Tmax = ∞, while

T̃m =
∫ Tm

0
φ2(t)dt =

∫ T
0
φ2(t)dt <∞.
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