1 |
J. Mao, Forced hyperbolic mean curvature flow, Kodai Math. J. 35 (2012), no. 3, 500-522.
DOI
|
2 |
J. Mao, Deforming two-dimensional graphs in by forced mean curvature flow, Kodai Math. J. 35 (2012), no. 3, 523-531.
DOI
|
3 |
J. Mao, A class of rotationally symmetric quantum layers of dimension 4, J. Math. Anal. Appl. 397 (2013), no. 2, 791-799.
DOI
|
4 |
J. Mao, Eigenvalue inequalities for the p-Laplacian on a Riemannian manifold and estimates for the heat kernel, J. Math. Pures Appl. (9) 101 (2014), no. 3, 372-393.
DOI
|
5 |
J. Mao, Eigenvalue estimation and some results on finite topological type, Ph.D. thesis, IST-UTL, 2013.
|
6 |
J. Mao, G. Li, and C. Wu, Entire graphs under a general flow, Demonstratio Math. 42 (2009), no. 3, 631-640.
DOI
|
7 |
G. Perelman, The entropy formula for the Ricci flow and its geometric applications, arXiv:math.DG/0211159.
|
8 |
J. Roth, A remark on almost umbilical hypersurfaces, Arch. Math. (Brno) 49 (2013), no. 1, 1-7.
DOI
|
9 |
K. Shiohama and H. W. Xu, Rigidity and sphere theorems for submanifolds, Kyushu J. Math. 48 (1994), no. 2, 291-306.
DOI
|
10 |
K. Shiohama and H. W. Xu, Rigidity and sphere theorems for submanifolds. II, Kyushu J. Math. 54 (2000), no. 1, 103-109.
DOI
|
11 |
L. Zhao, The first eigenvalue of p-Laplace operator under powers of the mth mean curvature flow, Results Math. 63 (2013), no. 3-4, 937-948.
|
12 |
B. Andrews, Contraction of convex hypersurfaces in Euclidean space, Calc. Var. Partial Differential Equations 2 (1994), no. 2, 151-171.
DOI
|
13 |
E. Cabezas-Rivas and C. Sinestrari, Volume-preserving flow by powers of the mth mean curvature, Calc. Var. Partial Differential Equations 38 (2010), no. 3-4, 441-469.
DOI
|
14 |
X. Cao, Eigenvalues of () on manifolds with nonnegative curvature operator, Math. Ann. 337 (2007), no. 2, 435-441.
DOI
|
15 |
X. Cao, First eigenvalues of geometric operators under the Ricci flow, Proc. Amer. Math. Soc. 136 (2008), no. 11, 4075-4078.
DOI
|
16 |
P. Freitas, J. Mao, and I. Salavessa, Spherical symmetrization and the first eigenvalue of geodesic disks on manifolds, Calc. Var. Partial Differential Equations 51 (2014), no. 3-4, 701-724.
DOI
|
17 |
G. H. Li, J. Mao, and C. X. Wu, Convex mean curvature flow with a forcing term in direction of the position vector, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 2, 313-332.
|
18 |
R. S. Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geom. 17 (1982), no. 2, 255-306.
|
19 |
G. Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984), no. 1, 237-266.
|
20 |
G. Li and I. Salavessa, Forced convex mean curvature flow in Euclidean spaces, Manuscripta Math. 126 (2008), no. 3, 333-351.
DOI
|
21 |
J.-F. Li, Eigenvalues and energy functionals with monotonicity formulae under Ricci flow, Math. Ann. 338 (2007), no. 4, 927-946.
DOI
|
22 |
L. Ma, Eigenvalue monotonicity for the Ricci-Hamilton flow, Ann. Global Anal. Geom. 29 (2006), no. 3, 287-292.
DOI
|
23 |
X. Cao, S. Hou, and J. Ling, Estimate and monotonicity of the first eigenvalue under the Ricci flow, Math. Ann. 354 (2012), no. 2, 451-463.
DOI
|