• Title/Summary/Keyword: mdr-cancer cell

Search Result 69, Processing Time 0.035 seconds

Increases in Doxorubicin Sensitivity and Radioiodide Uptake by Transfecting shMDR and Sodium/Iodide Symporter Gene in Cancer Cells Expressing Multidrug Resistance (다약제내성 암세포에서 shMDR과 Sodium/Iodide Symporter 유전자의 이입에 의한 Doxorubicin 감수성과 방사성옥소 섭취의 증가)

  • Ahn, Sohn-Joo;Lee, Yong-Jin;Lee, You-La;Choi, Chang-Ik;Lee, Sang-Woo;Yoo, Jeong-Soo;Ahn, Byeong-Cheol;Lee, In-Kyu;Lee, Jae-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.3
    • /
    • pp.209-217
    • /
    • 2007
  • Purpose: Multidrug resistance (MDR) of the cancer cells related to mdr1 gene expression can be effectively treated by selective short hairpin RNA for mdr1 gene (shMDR). Sodium/iodide symporter (NIS) gene is well known to have both reporter and therapeutic gene characteristics. We have co-transfected both shMDR and NIS gene into colon cancer cells (HCT15 cell) expressing MDR and Tc-99m sestamibi and I-125 uptake were measured. In addition, cytotoxic effects of doxorubicin and I-131 therapy were also assessed after transfection. Material and Methods: At first, shMDR was transfected with liposome reagent into human embryonic kidney cells (HEK293) and HCT cells. shMDR transfection was confirmed by RT-PCR and western blot analysis. Adenovirus expressing NIS (Ad-NIS) gene and shMDR (Ad-shMDR) were co-transfected with Ad-NIS into HCT15 cells. Forty-eight hours after infection, inhibition of P-gycoprotein (Pgp) function by shMDR was analyzed by a change of Tc-99m sestamibi uptake and doxorubicin cytotoxicity, and functional activity of induced NIS gene expression was assessed with I-125 uptake assay. Results: In HEK293 cells transfected with shMDR, mdr1 mRNA and Pgp protein expressions were down regulated. HCT15 cells infected with 20 MOI of Ad-NIS was higher NIS protein expression than control cells. After transfection of 300 MOI of Ad-shMDR either with or without 10 MOI of Ad-NIS, uptake of Tc-99m sestamibi increased up to 1.5-fold than control cells. HCT15 cells infected with 10 MOI of Ad-NIS showed approximately 25-fold higher I-125 uptake than control cells. Cotransfection of Ad-shMDR and Ad-NIS resulted in enhanced cytotoxic by doxorubicin in HCT15 cells. I-131 treatment on HCT15 cells infected with 20 MOI of Ad-NIS revealed increased cytotoxic effect. Conclusion: Suppression of mdr1 gene expression, retention of Tc-99m sestamibi, enhanced doxorubicin cytotoxicity and increases in I-125 uptake were achieved in MDR expressing cancer cell by co-transfection of shMDR and NIS gene. Dual therapy with doxorubicin and radioiodine after cotransfection shMDR and NIS gene can be used to overcome MDR.

Role of Caveolin-1 in Indomethacin-induced Death of Human Hepato-adenocarcinoma SK-Hep1 Cells

  • Kim, Kyung-Nam;Kang, Ju-Hee;Yim, Sung-Vin;Park, Chang-Shin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.4
    • /
    • pp.143-148
    • /
    • 2008
  • Caveolin-1 (CAV1) is an integral membrane protein that may function as a scaffold for plasma membrane proteins and acts as a tumor suppressor protein. One causative factor of chemotherapy-resistant cancers is P-plycoprotein (P-gp), the product of the multidrug resistance-1 gene (MDR1), which is localized in the caveolar structure. Currently, the interactive roles of CAV1 and MDR1 expression in the death of cancer cells remain controversial. In this study, we investigated the effects of indomethacin on the cell viability and the expression levels of MDR1 mRNA and protein in a CAV1-siRNA-mediated gene knockdown hepatoma cell line (SK-Hep1). Cell viability was significantly decreased in CAV1-siRNA-transfected cells compared with that of control-siRNA-transfected cells. Furthermore, the viability of cells pretreated with CAV1 siRNA was markedly decreased by treatment with indomethacin (400${\mu}$M for 24 h). However, the protein and mRNA levels of MDR1 were unchanged in CAV1-siRNA-transfected cells. These results suggest that CAV1 plays an important role as a major survival enzyme in cancer cells, and indomethacin can sensitively induce cell death under conditions of reduced CAV1 expression, independent of MDR1 expression.

Synthesis and Biological Evaluation of Decursin, Prantschimgin and Their Derivatives

  • Xia, Yan;Min, Kyung-Hoon;Lee, Kyeong
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.1
    • /
    • pp.43-48
    • /
    • 2009
  • The synthesis of coumarin-based natural products and their derivatives is described. In vitro MDR reversal activities of the synthesized compounds were evaluated in P-glycoprotein over-expressing human sarcoma cell line MES-SA/DX5. Some of the coumarin derivatives were found to show potent MDR reversal activity. In particular, pyridyl derivative (15e) exhibited more potency than verapamil.

Tubulin Beta3 Serves as a Target of HDAC3 and Mediates Resistance to Microtubule-Targeting Drugs

  • Kim, Youngmi;Kim, Hyuna;Jeoung, Dooil
    • Molecules and Cells
    • /
    • v.38 no.8
    • /
    • pp.705-714
    • /
    • 2015
  • We investigated the role of HDAC3 in anti-cancer drug-resistance. The expression of HDAC3 was decreased in cancer cell lines resistant to anti-cancer drugs such as celastrol and taxol. HDAC3 conferred sensitivity to these anti-cancer drugs. HDAC3 activity was necessary for conferring sensitivity to these anti-cancer drugs. The down-regulation of HDAC3 increased the expression of MDR1 and conferred resistance to anti-cancer drugs. The expression of tubulin ${\beta}3$ was increased in drug-resistant cancer cell lines. ChIP assays showed the binding of HDAC3 to the promoter sequences of tubulin ${\beta}3$ and HDAC6. HDAC6 showed an interaction with tubulin ${\beta}3$. HDAC3 had a negative regulatory role in the expression of tubulin ${\beta}3$ and HDAC6. The down-regulation of HDAC6 decreased the expression of MDR1 and tubulin ${\beta}3$, but did not affect HDAC3 expression. The down-regulation of HDAC6 conferred sensitivity to taxol. The down-regulation of tubulin ${\beta}3$ did not affect the expression of HDAC6 or MDR1. The down-regulation of tubulin ${\beta}3$ conferred sensitivity to anti-cancer drugs. Our results showed that tubulin ${\beta}3$ serves as a downstream target of HDAC3 and mediates resistance to microtubule-targeting drugs. Thus, the HDAC3-HDAC6-Tubulin ${\beta}$ axis can be employed for the development of anti-cancer drugs.

Isolation and Structure Elucidation, Molecular Docking Studies of Screlotiumol from Soil Borne Fungi Screlotium rolfsii and their Reversal of Multidrug Resistance in Mouse Lymphoma Cells

  • Ahmad, Bashir;Rizwan, Muhammad;Rauf, Abdur;Raza, Muslim;Azam, Sadiq;Bashir, Shumaila;Molnar, Joseph;Csonka, Akos;Szabo, Diana
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.4
    • /
    • pp.2083-2087
    • /
    • 2016
  • A new compound namely (13-(3,3-dihydroxypropyl)-1,6-dihydroxy-3,4-dihydro-1H-isochromen-8(5H)-one (1) was isolated from an ethyl acetate extract of the borne fungi Screlotium rolfsii. Its chemical structure was elucidated by spectroscopic analysis. Screlotiumol 1 were evaluated for their effects on the reversion of multidrug resistant (MDR) mediated by P-glycoprotein (P-gp) of the soil borne fungi. The multidrug resistant P-glycoprotein is a target for chemotherapeutic drugs in cancer cells. In the present study rhodamine-123 exclusion screening test on human mdr1 gene transfected mouse gene transfected L5178 and L5178Y mouse T-cell lymphoma which showed excellent MDR reversing effect in a dose dependent manner against mouse T-lymphoma cell line. Moreover, molecular docking studies of compound-1 also showed better results as compared with the standard. Therefore the preliminary results obtained from this study suggest that screlotiumol 1 could be used as a potential agent for the treatment of cancer.

The Relationship between MDR1 Polymorphisms and the Response to Etoposide/Cisplatin Combination Chemotherapy in Small Cell Lung Cancer (소세포폐암에서 Multidrug Resistance-1 유전자의 다형성과 Etoposide-cisplatin 항암화학요법 반응의 관계)

  • Sohn, Ji Woong;Lee, Shin Yup;Lee, Su Jung;Jeon, Hyo-Sung;Lee, Jae Hee;Park, Jae Hyung;Kim, Eun Jin;Kang, Young Mo;Lee, Jae-Tae;Cha, Seung Ick;Kim, Chang Ho;Jung, Tae Hoon;Park, Jae Yong
    • Tuberculosis and Respiratory Diseases
    • /
    • v.58 no.2
    • /
    • pp.135-141
    • /
    • 2005
  • 배경 및 목적 : Multidrug Resistance-1 (MDR1) 유전자는 다약제내성에 관여하는 P-glycoprotein을 암호화한다. MDR1 유전자의 다형성은 P-glycoprotein의 발현과 기능의 차이를 일으켜 항암화학요법 반응에 영향을 미칠 수 있을 것이다. 저자들은 소세포폐암 환자에서 MDR1 유전자의 다형성과 일배체형에 따른 항암화학요법에 대한 반응을 조사하였다. 대상 및 방법 : 경북대학병원에서 병리적으로 소세포폐암으로 진단받고 etoposide-cisplatin 항암화학요법을 받은 54명을 대상으로 하였다. 전혈 5cc에서 DNA를 추출하고 PCR-RFLP법을 통해 MDR1 유전자 엑손 21의 2677G>T 다형성과, 엑손 26의 3435C>T 다형성을 조사하고 다형성과 일배체형에 따른 항암화학요법의 반응을 조사하였다. 결 과 : 2677G>T 유전자형에 따른 항암화학요법의 반응은 유의한 차이가 없었다. 3435 CC 유전자형은 3435 CT+TT 형에 비해 치료 반응율이 유의하게 높았다 (P = 0.025). 유전자형 분석 결과와 일치되게 2677G/3435C 일배체형은 다른 일배체형에 비해 치료반응을 보이는 경우가 유의하게 많았다 (P = 0.015). 결 론 : 소세포폐암에서 MDR1 유전자의 2677G>T와 3435C>T 다형성 및 이들 다형성의 일배체형은 etoposide-cisplatin 항암화학요법의 반응을 예측할 수 있는 지표로 사용될 수 있을 것으로 생각된다.

Identification of Proteins Responsible for the Development of Adriamycin Resistance in Human Gastric Cancer Cells Using Comparative Proteomics Analysis

  • Yang, Yi-Xuan;Hu, Huai-Dong;Zhang, Da-Zhi;Ren, Hong
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.853-860
    • /
    • 2007
  • Resistance to anticancer drugs is a major obstacle in the effective treatment of tumors. To understand the mechanisms responsible for multidrug resistance (MDR), a proteomic approach was used to identify proteins that were expressed in different levels by the adriamycinresistant human gastric cancer cell line, SGC7901/ADR, and its parental cell line, SGC7901. Two-dimensional gel electrophoresis (2-DE) and image analysis was used to determine which protein spots were expressed in different levels by the two cell lines. These spots were then partially identified using ESI-Q-TOF mass spectrometry, and the differential expressional levels of the partially identified proteins were then determined by western blot analysis and real-time RT-PCR. Additionally, the association of Nucleophosmin (NPM1), a protein that was highly expressed by SGC7901/ADR, with MDR was analyzed using siRNA. As a result of this study, well-resolved, reproducible 2-DE patterns of SGC7901/ADR and SGC7901 were established, and 16 proteins that may playa role in the development of thermo resistance were identified. Additionally, suppression of NPMl expression was found to enhance adriamycin chemosensitivity in SGC7901/ADR. These results provide a fundamental basis for the elucidation of the molecular mechanism of MDR, which may assist in the treatment of gastric cancer.

Isolation and Properties of Cytotoxic Polyene Antibiotics Produced by Myxococcus stipitatus JW117. (Myxococcus stipitatus JW117이 생산하는 Polyene계 세포독성 물질의 분리 및 특성)

  • 안종웅;최상운;권호정
    • Microbiology and Biotechnology Letters
    • /
    • v.30 no.2
    • /
    • pp.157-161
    • /
    • 2002
  • Drug resistance is one of the most significant impediments to successful chemotherapy of cancer. Multidrug-resistance (MDR) is characterized by decreased cellular sensitivity to anticancer agents due to the overexpression of P-glycoprotein. By employing adriamycin-resistance CL02 cancer cells, we undertook the screening for agents which were effective to multidrug-resistant cancer cells. As a result, a myxobacterial strain JW117 was selected for study since the solvent extract of cell mass of the strain was found to exhibit significant activity against the CL02 cancer cells. Cytotoxicity-guided chromatographic fractionation led to the isolation of phenalamides $A_2$ and $A_3$. The producing organism was identified as Myxococcus stipitatus by taxonomic comparison with type strains of Myxococcus sp. as well as its morphological and physiological characteristics. Phenalamides$ A_1$,$ A_2$ and $A_3$ were as active against drug-resistant cancer cells CL02 and CP70 as against the corresponding sensitive cells with $IC_{50}$ values ranging from 0.23~0.57 $\mu\textrm{g}$/ml.

Effect of Verapamil on Cellular Uptake of Tc-99m MIBI and Tetrofosmin on Several Cancer Cells (수종의 암세포에서 Verapamil이 Tc-99m MIBI와 Tetrofosmin의 섭취에 미치는 영향)

  • Kim, Dae-Hyun;Yoo, Jung-Ah;Suh, Myung-Rang;Bae, Jin-Ho;Jeong, Shin-Young;Ahn, Byeong-Cheol;Lee, Kyu-Bo;Lee, Jae-Tae
    • The Korean Journal of Nuclear Medicine
    • /
    • v.38 no.1
    • /
    • pp.85-98
    • /
    • 2004
  • Purpose: Cellular uptake of $^{99}mTc$-sestamibi (MIBI) and $^{99}mTc$-tetrofosmin (TF) is low in cancer cells expressing multidrug resistance(MDR) by p-glycoprotein(Pgp) or multidrug related protein(MRP). Verapamil is known to increase cellular uptake of MIBI in MDR cancer cells, but is recently reported to have different effects on tracer uptake in certain cancer cells. This study was prepared to evaluate effects of verapamil on cellular uptake of MIBI and TF in several cancer cells. Materials and Methods: Celluar uptakes of Tc-99m MIBI and TF were measured in erythroleukermia K562 cell, breast cancer MCF7 cell, and human ovarian cancer SK-OV-3 cells, and data were compared with those of doxorubicin-resistant K562(Ad) cells. RT-PCR and Western blot analysis were used for the detection of mdr1 mRNA and Pgp expression, and to observe changes in isotypes of PKC enzyme. Effects of verapamil on MIBI and TF uptake were evaluated at different concentrations upto $200{\mu}M\;at\;1{\times}10^6\;cells/ml\;at\;37^{\circ}C$. Radioactivity in supernatant and pellet was measured with gamma counter to calculate cellular uptake ratio. Toxicity of verapamil was measured with MTT assay. Results: Cellular uptakes of MIBI and TF were increased by time in four cancer cells studied. Co-incubation with verapamil resulted in an increase in uptake of MIBI and TF in K562(Adr) cell at a concentration of $100{\mu}M$ and the maximal increase at $50{\mu}M$ was 10-times to baseline. In contrast, uptakes of MIBI and TF in K562, MCF7, SK-OV3 cells were decreased with verapamil treatment at a concentration over $1{\mu}M$. With a concentration of $200{\mu}M$ verapamil, MIBI and TF uptakes un K562 cells were decreased to 1.5 % and 2.7% of those without verapamil, respectively. Cellular uptakes of MIBI and TF in MCF7 and SK-OV-3 cells were not changed with $10{\mu}M$, but were also decreased with verapamil higher than $10{\mu}M$, resulting 40% and 5% of baseline at $50{\mu}M$. MTT assay of four cells revealed that K562, MCF7, SK-OV3 were not damaged with verapamil at $200{\mu}M$. Conclusion: Although verapamil increases uptake of MIBI and TF in MDR cancer cells, cellular uptakes were further decreased with verapamil in certain cancer cells, which is not related to cytotoxicity of drug. These results suggest that cellular uptakes of both tracers might differ among different cells, and interpretation of changes in tracer uptake with verapamil in vitro should be different when different cell lines are used.

Isolation and Properties of Cytotoxic Antibiotics Produced by Myxococcus stipitatus JW150 (Myxococcus stipitatus JW150이 생산하는 세포독성 물질의 분리 및 특성)

  • 안종웅;이정옥
    • YAKHAK HOEJI
    • /
    • v.46 no.2
    • /
    • pp.108-112
    • /
    • 2002
  • Drug resistance is one of the most significant impediments to successful chemotherapy of cancer. Multidrug-resistance (MDR) is characterized by decreased cellular sensitivity to anticancer agents due to the overexpression of P-glycoprotein. By employing a resistant subline of HCT15 to adriamycin (CL02), we undertook the screening for agents which were effective to multidrug-resistant cancer cells. As a result, a myxobacterial strain JW150 was selected for study since an activity against CL02 cells was discovered in the strain. Cytotoxicity-guided fractionation of the culture broth led to the isolation of cystothiazole A and melithiazole F. The producing organism was identified as Myxococcus stipitatus by taxonomic comparison with type strains of Myxococcus sp. as well as its morphological and physiological characteristics. Cystothiazole A and melithiazole F demonstrated potent cytotoxicity against certain human cancer cells with $IC_{50}$ values ranging from 0.03~ $0.72{\mu}{\textrm{g}}$/ml. Both compounds were interestingly as active against drug-resistant sublines CL02 and CP70 as against the corresponding parental cells.