Browse > Article
http://dx.doi.org/10.14348/molcells.2015.0086

Tubulin Beta3 Serves as a Target of HDAC3 and Mediates Resistance to Microtubule-Targeting Drugs  

Kim, Youngmi (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
Kim, Hyuna (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
Jeoung, Dooil (Department of Biochemistry, College of Natural Sciences, Kangwon National University)
Abstract
We investigated the role of HDAC3 in anti-cancer drug-resistance. The expression of HDAC3 was decreased in cancer cell lines resistant to anti-cancer drugs such as celastrol and taxol. HDAC3 conferred sensitivity to these anti-cancer drugs. HDAC3 activity was necessary for conferring sensitivity to these anti-cancer drugs. The down-regulation of HDAC3 increased the expression of MDR1 and conferred resistance to anti-cancer drugs. The expression of tubulin ${\beta}3$ was increased in drug-resistant cancer cell lines. ChIP assays showed the binding of HDAC3 to the promoter sequences of tubulin ${\beta}3$ and HDAC6. HDAC6 showed an interaction with tubulin ${\beta}3$. HDAC3 had a negative regulatory role in the expression of tubulin ${\beta}3$ and HDAC6. The down-regulation of HDAC6 decreased the expression of MDR1 and tubulin ${\beta}3$, but did not affect HDAC3 expression. The down-regulation of HDAC6 conferred sensitivity to taxol. The down-regulation of tubulin ${\beta}3$ did not affect the expression of HDAC6 or MDR1. The down-regulation of tubulin ${\beta}3$ conferred sensitivity to anti-cancer drugs. Our results showed that tubulin ${\beta}3$ serves as a downstream target of HDAC3 and mediates resistance to microtubule-targeting drugs. Thus, the HDAC3-HDAC6-Tubulin ${\beta}$ axis can be employed for the development of anti-cancer drugs.
Keywords
anti-cancer drug-resistance; expression regulation; HDAC3; tubulin beta 3;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kamath, K., Wilson, L., Cabral, F., and Jordan, M.A. (2005). BetaIIItubulin induces paclitaxel resistance in association with reduced effects on microtubule dynamic instability. J. Biol. Chem. 280, 12902-12907.   DOI   ScienceOn
2 Kavallaris, M., Kuo, D.Y., Burkhart, C.A., Regl, D.L., Norris, M.D., Haber, M., and Horwitz, S.B. (1997). Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes. J. Clin. Invest. 100, 1282-1293.   DOI   ScienceOn
3 Kim, H.C., Choi, K.C., Choi, H.K., Kang, H.B., Kim, M.J., Lee, Y.H., Lee, O.H., Lee, J., Kim, Y.J., Jun, W., et al. (2010a). HDAC3 selectively represses CREB3-mediated transcription and migration of metastatic breast cancer cells. Cell. Mol. Life Sci. 67, 3499-3510.   DOI
4 Kim, Y., Park, H., Park, D., Lee, Y.S., Choe, J., Hahn, J.H., Lee, H., Kim, Y.M., and Jeoung, D. (2010b). Cancer/testis antigen CAGE exerts negative regulation on p53 expression through HDAC2 and confers resistance to anti-cancer drugs. J. Biol. Chem. 285, 25957-25968.   DOI   ScienceOn
5 Levallet, G., Bergot, E., Antoine, M., Creveuil, C., Santos, A.O., Beau-Faller, M., de Fraipont, F., Brambilla, E., Levallet, J., Morin, F., et al. (2012). High TUBB3 expression, an independent prognostic marker in patients with early non-small cell lung cancer treated by preoperative chemotherapy, is regulated by K-Ras signaling pathway. Mol. Cancer Ther. 11, 1203-1213.   DOI
6 Li, J., Wang, J., Wang, J., Nawaz, Z., Liu, J.M., Qin, J., and Wong, J. (2000). Both corepressor proteins SMRT and N-CoR exist in large protein complexes containing HDAC3. EMBO J. 19, 4342-4350.   DOI   ScienceOn
7 Lv, K., Liu, L., Wang, L., Yu, J., Liu, X., Cheng, Y., Dong, M., Teng, R., Wu, L., Fu, P., et al. (2012). Lin28 mediates paclitaxel resistance by modulating p21, Rb and Let-7a miRNA in breast cancer cells. PLoS One 7, e40008.   DOI
8 Mahlknecht, U., Emiliani, S., Najfeld, V., Young, S, and Verdin, E. (1999). Genomic organization and chromosomal localization of the human histone deacetylase 3 gene. Genomics 56. 197-202.   DOI   ScienceOn
9 Mahlknecht, U., Will, J., Varin, A., Hoelzer, D., and Herbein, G. (2004). Histone deacetylase 3, a class I histone deacetylase, suppresses MAPK11-mediated activating transcription factor-2 activation and represses TNF gene expression. J. Immunol. 173, 3979-3990.   DOI
10 Mechetner, E., Kyshtoobayeva, A., Zonis, S., Kim, H., Stroup, R., Garcia, R., Parker, R.J., and Fruehauf, J.P. (1998) Levels of multidrug resistance (MDR1) P-glycoprotein expression by human breast cancer correlate with in vitro resistance to taxol and doxorubicin. Clin. Cancer Res. 4, 389-398.
11 Namdar, M., Perez, G., Ngo, L., Paul, A., and Marks, P.A. (2010). Selective inhibition of histone deacetylase 6 (HDAC6) induces DNA damage and sensitizes transformed cells to anticancer agents. Proc. Natl. Acad. Sci. USA 107, 20003-20008.   DOI   ScienceOn
12 Ott, P.A., Chang, J., Madden, K., Kannan, R., Muren, C., Escano, C., Cheng, X., Shao, Y., Mendoza, S., Gandhi, A., et al. (2013). Oblimersen in combination with temozolomide and albuminbound paclitaxel in patients with advanced melanoma: a phase I trial. Cancer Chemother. Pharmacol. 71, 183-191.   DOI   ScienceOn
13 Owonikoko, T.K., Ramalingam, S.S., Kanterewicz, B., Balius, T., Belani, C.P., and Hershberger, P.A. (2010). Vorinostat increases carboplatin and paclitaxel activity in non-small cell lung cancer cells. Int. J. Cancer 126, 743-755.   DOI   ScienceOn
14 Patel, N., Chatterjee, S.K., Vrbanac, V., Chung, I., Mu, C.J., Olsen, R.R., Waghorne, C., and Zetter, B.R. (2010). Rescue of paclitaxel sensitivity by repression of Prohibitin1 in drug-resistant cancer cells Proc. Natl. Acad. Sci. USA 107, 2503-2508.   DOI   ScienceOn
15 Wang, L., Xiang, S., Williams, K.A., Dong, H., Bai, W., Nicosia, S.V., Khochbin, S., Bepler, G., and Zhang, X. (2012). Depletion of HDAC6 enhances cisplatin-induced DNA damage and apoptosis in non-small cell lung cancer cells. PLoS One 7, e44265.   DOI
16 Seve, P., Reiman, T., and Dumontet, C. (2010). The role of betaIII tubulin in predicting chemoresistance in non-small cell lung cancer. Lung Cancer 67, 136-143.   DOI   ScienceOn
17 Takakura, Y., Hinoi, T., Oue, N., Sasada, T., Kawaguchi, Y., Okajima, M., Akyol, A., Fearon, E.R., Yasui, W., and Ohdan, H. (2010). CDX2 regulates Multidrug Resistance 1 gene expression in malignant intestinal epithelium. Cancer Res. 70, 6767-6778.   DOI
18 Verdier-Pinard, P., Wang, F., Martello, L., Burd, B., Orr, G.A., and Horwitz, S.B. (2003). Analysis of tubulin isotypes and mutations from taxol-resistant cells by combined isoelectrofocusing and mass spectrometry. Biochemistry 42, 5349-5357.   DOI   ScienceOn
19 Xie, H., Lee, M.H., Zhu, F., Reddy, K., Peng, C., Li, Y., Lim do, Y., Kim, D.J., Li, X., Kang, S., et al. (2013). Identification of an Aurora kinase inhibitor specific for the Aurora B isoform. Cancer Res. 73, 716-724.   DOI
20 Xu, R., Sato, N., Yanai, K., Akiyoshi, T., Nagai, S., Wada, J., Koga, K., Mibu, R., Nakamura, M., and Katano, M. (2009). Enhancement of paclitaxel-induced apoptosis by inhibition of mitogenactivated protein kinase pathway in colon cancer cells. Anticancer Res. 29, 261-270.
21 Xu, R., Nakano, K., Iwasaki, H., Kumagai, M., Wakabayashi, R., Yamasaki, A., Suzuki, H., Mibu, R., Onishi, H., and Katano, M. (2011). Dual blockade of phosphatidylinositol 3'-kinase and mitogen-activated protein kinase pathways overcomes paclitaxelresistance in colorectal cancer. Cancer Lett. 306, 151-160.   DOI   ScienceOn
22 Yan, L.H., Wang, X.T., Yang, J., Lian, C., Kong, F.B., Wei, W.Y., Luo, W., Xiao, Q., and Xie, Y.B. (2013). Reversal of multidrug resistance in gastric cancer cells by CDX2 downregulation. World J. Gastroenterol. 19, 4155-4165.   DOI   ScienceOn
23 Yao, Y.L., Yang, W.M., and Seto, E. (2001). Regulation of transcription factor YY1 by acetylation and deacetylation. Mol. Cell Biol. 21, 5979-5991.   DOI
24 Yin, S., Bhattacharya, R., and Cabral, F. (2010). Human mutations that confer paclitaxel resistance. Mol. Cancer Ther. 9, 327.   DOI
25 Zhang, J., Kalkum, M., Chait, B.T., and Roeder, R.G. (2002). The N-CoR-HDAC3 nuclear receptor corepressor complex inhibits the JNK pathway through the integral subunit GPS2. Mol. Cell 9, 611-623.   DOI   ScienceOn
26 Zhang, Y., Li, N., Caron, C., Matthias, G., Hess, D., Khochbin, S., and Matthias, P. (2003). HDAC-6 interacts with and deacetylates tubulin and microtubules in vivo. EMBO J 22, 1168-1179.   DOI   ScienceOn
27 Zhang, X., Ozawa, Y., Lee, H., Wen, Y.D., Tan,T.H., Wadzinski, B.E., and Seto, E. (2005). Histone deacetylase 3 (HDAC3) activity is regulated by interaction with protein serine/threonine phosphatase 4. Genes Dev. 19, 827-839.   DOI   ScienceOn
28 Chae, S., Kim, Y.B., Lee, J.S., and Cho, H. (2012). Resistance to paclitaxel in hepatoma cells is related to static JNK activation and prohibition into entry of mitosis. Am. J. Physiol. Gastrointest. Liver Physiol. 302, 1016-1024.   DOI   ScienceOn
29 Akiyama, K., Ohga, N., Hida, Y., Kawamoto, T., Sadamoto, Y., Ishikawa, S., Maishi, N., Akino, T., Kondoh, M., Matsuda, A., et al. (2012). Tumor endothelial cells acquire drug resistance by MDR1 up-regulation via VEGF signaling in tumor microenvironment. Am. J. Pathol. 180, 1283-1293.   DOI   ScienceOn
30 Bonet, C., Giuliano, S., Ohanna, M., Bille, K., Allegra, M., Lacour, J.P., Bahadoran, P., Rocchi, S., Ballotti, R., and Bertolotto, C. (2012). Aurora B is regulated by the mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) signaling pathway and is a valuable potential target in melanoma cells. J. Biol. Chem. 287, 29887-29898.   DOI
31 Chen, L.F., Fischle, W., Verdin, E., and Greene, W.C. (2001). Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293, 1653-1657.   DOI   ScienceOn
32 Cittelly, D.M., Dimitrova, I., Howe, E.N., Cochrane, D.R., Jean, A., Spoelstra, N.S., Post, M.D., Lu, X., Broaddus, R.R., Spillman, M.A., et al. (2012). Restoration of miR-200c to ovarian cancer reduces tumor burden and increases sensitivity to paclitaxel. Mol. Cancer Ther. 11, 2556-2565.   DOI
33 Du, L., Subauste, M.C., DeSevo, C., Zhao, Z., Baker, M., Borkowski, R., Schageman, J.J., Greer, R., Yang, C.R., Suraokar, M., et al. (2012). miR-337-3p and its targets STAT3 and RAP1A modulate taxane sensitivity in non-small cell lung cancers. PLoS One 7, e39167.   DOI   ScienceOn
34 Hei, C., Cheung, A., Wu, S.Y., Lee, T.R., Chang, C.Y., Wu, J.S., Hsieh, H.P., and Chang, J.Y. (2010). Cancer cells acquire mitotic drug resistance properties through beta I-tubulin mutations and alterations in the expression of beta-tubulin isotypes. PLoS One 5, e12564.   DOI   ScienceOn
35 Fadri-Moskwik, M., Weiderhold, K.N., Deeraksa, A., Chuang, C., Pan, J., Lin, S.H., and Yu-Lee, L.Y. (2012). Aurora B is regulated by acetylation/deacetylation during mitosis in prostate cancer cells. FASEB J. 26, 4057-4067.   DOI
36 Fujita, Y., Kojima, K., Ohhashi, R., Hamada, N., Nozawa, Y., Kitamoto, A., Sato, A., Kondo, S., Kojima, T., Deguchi, T., et al. (2010). MiR-148a attenuates paclitaxel resistance of hormonerefractory, drug-resistant prostate cancer PC3 cells by regulating MSK1 expression. J. Biol. Chem. 285, 19076-19084.   DOI   ScienceOn
37 Gao, Y.S., Hubbert, C.C., and Yao, T.P. (2010). The microtubuleassociated histone deacetylase 6 (HDAC6) regulates epidermal growth factor receptor (EGFR) endocytic trafficking and degradation. J. Biol. Chem. 285, 11219-11226.   DOI   ScienceOn
38 Hubbert, C., Guardiola, A., Shao, R., Kawaguchi, Y., Ito, A., Nixon, A., Yoshida, M., Wang, X.F., and Yao, T.P. (2002). HDAC6 is a microtubule-associated deacetylase. Nature 417, 455-458.   DOI   ScienceOn
39 Ishii, S., Kurasawa, Y., Wong, J., and Yu-Lee, L.Y. (2008). Histone deacetylase 3 localizes to the mitotic spindle and is required for kinetochore-microtubule attachment. Proc. Natl. Acad. Sci. USA 105, 4179-4184.   DOI   ScienceOn
40 Kaluza, D., Kroll, J., Gesierich, S., Yao, T.P., Boon, R.A., Hergenreider, E., Tjwa, M., Rössig, L., Seto, E., Augustin, H.G., et al. (2011). Class IIb HDAC6 regulates endothelial cell migration and angiogenesis by deacetylation of cortactin. EMBO J. 30, 4142-4156.   DOI   ScienceOn