• Title/Summary/Keyword: mc-Si

Search Result 104, Processing Time 0.028 seconds

Metal-assisted grown Si films and semiconducting nanowires for solar cells

  • Kim, Jun-Dong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.13-13
    • /
    • 2010
  • The solar energy conversion will take 10 % global energy need by 2033. A thin film type solar cell has been considered as one of the promising candidates for a large area applicable solar cell fabrication at a low cost. The metal-assisted growth of microcrystalline Si (mc-Si) films has been reported for a quality Si film synthesis at a low temperature. It discusses the spontaneous growth of a Si film above a metal-layer for a thin film solar cell. Quite recently, a substantial demand of nanomaterials has been addressed for cost-effective solar cells. The nanostructure provides a large photoactive surface at a fixed volume, which is an advantage in the effective use of solar power. But the promising of nanostructure active solar cell has not been much fulfilled due mainly to the difficulty in architecture of nanostructures. We present here the Si nanowire (SiNW)-embedded Schottky solar cell. Multiple SiNWs were connected to two different metals to form a Schottky or an ohmic contact according to the metal work function values. It discusses the scheme of rectifying contact between metals and SiNWs and the SiNW-embedded Schottky solar cell performances.

  • PDF

Niobian Sphene from the McDonald Pegmatite Mine, Bancroft, Ontarion, Canada: Consideration of Substitutions (카나다 온타리오 밴크로프트의 맥도날도 페그마타이트 광산에서 산출된 Nb Sphene: 원소 치환에 관한 고찰)

  • ;Donald R. Peacor
    • Journal of the Mineralogical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.8-10
    • /
    • 1989
  • Sphene from the McDonald pegmatite near Bancroft, Ontario, Canada was analyzed using EPMA. It contains 4.3 to 6.3 weight percent of Nb2O5 with an average formula Ca1.02(Ti0.62Al0.22Nb0.07Fe0.06Ta0.01)Si0.99(O4.85F0.16). Three types of subtitutions are possible; 1)2Ti4+=(Nb, Ta)5+ + (Al, Fe3+), 2) Ti + O = (Al, Fe3+) + (F, OH), and 3) 2Ti + O = Fe2+ + (Nb, Ta)5+ + (F, OH). T재 different schemes of substitutions for balancing the analysis are considered when the iron is either all ferric or all ferrous. Assuming stoichiometry fo Ca and Si, a general formula derived from the two different schemes is Ca(Ti0.64Al0.22Fe3+0.06-X {{{{Fe_{x}^{2+} }} Nb0.01)Sio4.80-XF0.16(OH)0.04+x.

  • PDF

Continuous Stable production of won Willerand Factor Monoclonal Antibody in Spin Filter Bioreactor with Bleeding Technology

  • Yun, Joung-Won;Lee, Soo-Young;Park, Byung-Wook;Han-Kyu oh;Kim, Se-Ho;Byum, Tea-Ho;Park, Soung-yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.5 no.2
    • /
    • pp.130-135
    • /
    • 2000
  • The characteristics of two different modes of perfusion culture, intermittent and continuous bleedings, were investigated by culturing the hybridoma cells producing von Willebrand Factor (vWF) monoclonal antibody (McAb) in a 15 L bioreactor without clogging the filter. Both culture methods exhibited similar profiles of cell density and metabolite concentrations during the culture period at the cell concentration of around 1${\times}$107 cells/mL. When the perfusion rate was increased, the intermittrnt bleeding culture showed problems of ammonia accumulation and decrease of cell viability. The continuous bleeding culture in terms of nutrient consumption and metabolite production kinetics. But the analysis of specific oxygen consumption rate showed that the specific oxygen consumption rate of intermittent bleeding culture was similar to that of exponential growth phase. The continuous bleeding culture showed higher specific oxygen consumption rate of intermittent bleeding culture. finally we proved the possibility of long-term operation of continuous bleeding culture and produced approximately 40 g of vWF McAb in a 15L bioreactor after one-month operation.

  • PDF

Micromorph Schottky Silicon Solar Cells

  • Kim, Joon-Dong;Han, Chang-Soo;Yun, Ju-Hyung;Yi, Jun-Sin;Park, Yun-Chang
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.130-130
    • /
    • 2010
  • Thin Si films were grown by a plasma-enhanced chemical vapor deposition (PECVD, SNTEK, Korea) system. Two different deposition condition were applied and formed a fully amorphous Si (a-Si) film and a micromorph mixing of microcrystalline Si (mc-Si) and a-Si film. Under one sun illumination, the micromorph device provided the enhanced open circuit voltage and fill factor values. It presents the fabrication of the micromorph Si film and the a-Si film by modulating a deposition condition. The performances of the Si thin film Schottky solar cells are discussed.

  • PDF

A Control Strategy Based on Small Signal Model for Three-Phase to Single-Phase Matrix Converters

  • Chen, Si;Ge, Hongjuan;Zhang, Wenbin;Lu, Song
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1456-1467
    • /
    • 2015
  • This paper presents a novel close-loop control scheme based on small signal modeling and weighted composite voltage feedback for a three-phase input and single-phase output Matrix Converter (3-1MC). A small non-polar capacitor is employed as the decoupling unit. The composite voltage weighted by the load voltage and the decoupling unit voltage is used as the feedback value for the voltage controller. Together with the current loop, the dual-loop control is implemented in the 3-1MC. In this paper, the weighted composite voltage expression is derived based on the sinusoidal pulse-width modulation (SPWM) strategy. The switch functions of the 3-1MC are deduced, and the average signal model and small signal model are built. Furthermore, the stability and dynamic performance of the 3-1MC are studied, and simulation and experiment studies are executed. The results show that the control method is effective and feasible. They also show that the design is reasonable and that the operating performance of the 3-1MC is good.

Short-Term Effects of Low-Level Heavy Metal Contamination on Soil Health Analyzed by Nematode Community Structure

  • Park, Byeong-Yong;Lee, Jae-Kook;Ro, Hee-Myong;Kim, Young Ho
    • The Plant Pathology Journal
    • /
    • v.32 no.4
    • /
    • pp.329-339
    • /
    • 2016
  • The short-term effects of low-level contamination by heavy metals (As, Cd, Cu, and Pb) on the soil health were examined by analyzing soil nematode community in soils planted with tomatoes. For this, the soils were irrigated with five metal concentrations ([1, 1/4, $1/4^2$, $1/4^3$, and 0] ${\times}$ maximum concentrations [MC] detected in irrigation waters near abandoned mine sites) for 18 weeks. Heavy metal concentrations were significantly increased in soils irrigated with MC of heavy metals, among which As and Cu exceeded the maximum heavy metal residue contents of soil approved in Korea. In no heavy metal treatment controls, nematode abundances for all trophic groups (except omnivorous-predatory nematodes [OP]) and colonizer-persister (cp) values (except cp-4-5) were significantly increased, and all maturity indices (except maturity index [MI] of plant-parasitic nematodes) and structure index (SI) were significantly decreased, suggesting the soil environments might have been disturbed during 18 weeks of tomato growth. There were no concentration-dependent significant decreases in richness, abundance, or MI for most heavy metals; however, their significant decreases occurred in abundance and richness of OP and cp-4, MI2-5 (excluding cp-1) and SI, indicating disturbed soil ecosystems, at the higher concentrations (MC and MC/4) of Pb that had the most significant negative correlation coefficients for heavy metal concentrations and nematode community among the heavy metals. Therefore, the short-term effects of low-level heavy metal contamination on soil health can be analyzed by nematode community structures before the appearance of plant damages caused by the abiotic agents, heavy metals.

Mechanistic Aspects in the Grignard Coupling Reaction of Bis(chloromethyl)dimethylsilane with Trimethylchlorosilane

  • 조연석;유복렬;안삼영;정일남
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.4
    • /
    • pp.422-426
    • /
    • 1999
  • The Grignard reactions of bis(chloromethyl)dimethylsilane (1) with trimethylchlorosilane (2) in THF give both the intermolecular C-Si coupling and intramolecular C-C coupling products. At beginning stage, 1 reacts with Mg to give the mono-Grignard reagent ClCH2Me2SiCH2MgCl (1) which undergoes the C-Si coupling reaction to give MC2Si(CH2SiMe3)2 3, or C-C coupling to a mixture of formula Me3SiCH2(SiMe2CH2CH2)nR1 (n = 1, 2, 3, ..; 4a, R1I = H: 4b, R1 = SiMe3). In the reaction, two reaction pathways are involved: a) Ⅰ reacts with 2 to give Me3SiCH2SiMe2CH2Cl 6 which further reacts with Mg to afford a Me2SiCH2Mel-SiCH2MgCl (Ⅱ) or b) I cyclizes intramolecularly to a silacyclopropane intermediate A, which undergoes a ring-opening polymerization by the nucleophilic attack of the intermediates I or Ⅱ, followed by the termination reaction with H2O and 2, to give 4a and 4b, respectively. As the mole ratio of 2/1 increased from 2 to 16 folds, the formation of product 3 increased from 16% to 47% while the formation of polymeric products 4 was reduced from 60% to 40%. The intermolecular C-Si coupling reaction of the pathway a becomes more favorable than the intramolecular C-C coupling reaction of the pathways b at the higher mole ratio of 2/1.

Turn-off time improvement by fast neutron irradiation on pnp Si Bipolar Junction Transistor

  • Ahn, Sung Ho;Sun, Gwang Min;Baek, Hani
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.501-506
    • /
    • 2022
  • Long turn-off time limits high frequency operation of Bipolar Junction Transistors (BJTs). Turn-off time decreases with increases in the recombination rate of minority carriers at switching transients. Fast neutron irradiation on a Si BJT incurs lattice damages owing to the displacement of silicon atoms. The lattice damages increase the recombination rate of injected holes with electrons, and decrease the hole lifetime in the base region of pnp Si BJT. Fast neutrons generated from a beryllium target with 30 MeV protons by an MC-50 cyclotron were irradiated onto pnp Si BJTs in experiment. The experimental results show that the turn-off time, including the storage time and fall time, decreases with increases in fast neutron fluence. Additionally, it is confirmed that the base current increases, and the collector current and base-to-collector current amplification ratio decrease due to fast neutron irradiation.

Altered expression of norepinephrine transporter and norepinephrine in human placenta cause pre-eclampsia through regulated trophoblast invasion

  • Na, Kyu-Hwan;Choi, Jong Ho;Kim, Chun-Hyung;Kim, Kwang-Soo;Kim, Gi Jin
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.40 no.1
    • /
    • pp.12-22
    • /
    • 2013
  • Objective: We investigated the norepinephrine transporter (NET) expression in normal and pre-eclamptic placentas and analyzed the invasion activity of trophoblastic cells based on norepinephrine (NE)-NET regulation. Methods: NET and NE expression levels were examined by western blot and enzyme-linked immunosorbent assay, respectively. Trophoblast invasion activity, depending on NE-NET regulation, was determined by NET-small interfering RNA (siRNA) and NET transfection into the human extravillous trophoblast cells with or without NE treatment and invasion rates were analyzed by zymography and an invasion assay. Results: NET mRNA was expressed at a low level in pre-eclamptic placentas compared with normal placentas and NE concentration in maternal plasma increased significantly in pre-eclamptic women compared to normal pregnant women (p<0.05). NET gene upregulation and NE treatment stimulated trophoblast cell invasion up to 2.5-fold (p<0.05) by stimulating matrix metalloproteinase-9 activity via the phosphoinositol-3-kinase/AKT signaling pathway, whereas NET-siRNA with NE treatment reduced invasion rates. Conclusion: NET expression is reduced by inadequate regulation of NE levels during placental development. This suggests that a complementary balance between NET and NE regulates trophoblast cell invasion activities during placental development.

Effects of HPMC, MC, and Sodium Alginate on Rheological Properties of Flour Dough (HPMC, MC, sodium alginate 등의 증점제가 밀가루 반죽의 레올로지 특성에 미치는 영향)

  • Kim, Mi-Young;Yun, Mi-Sug;Lee, Jeong-Hoon;Lee, Si-Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.474-478
    • /
    • 2008
  • This study was carried out to evaluate the rheology of flour doughs containing 0.5% of hydroxypropylmethyl-cellulose (HPMC), methylcellulose (MC), and sodium alginate (SA), respectively. Farinograms, alveograms, a rapid visco analyzer (RVA), and rheofermentometer were employed in the analysis. According to the farinogram tests, the hydrocolloid additions caused changes in water absorption, dough development time, stability, and breakdown. The dough containing HPMC had the highest water absorption at $67.4{\pm}0.12%$. The HPMC dough also had the longest development time ($8.2{\pm}1.04$ min), stability ($12.7{\pm}0.42$ min), and breakdown ($7.9{\pm}1.3$ min). From the alveogram tests, P, G, and PIL values increased, whereas the L value decreased. The W values of the HPMC and SA doughs were increased, but that of the MC dough was decreased. According to the RVA results, the HPMC and SA doughs had reduced initial pasting temperatures whereas that of the MC dough was increased, but the difference was not significant. The peak viscosity of the MC dough also increased. Furthermore, all the doughs had increased breakdown times and decreases in final viscosity and setback. In the rheofermentometer tests, the HPMC dough presented the highest $H_m$, and the SA dough had the largest total volume.