• 제목/요약/키워드: maximum tensile strength

검색결과 782건 처리시간 0.026초

SCNCrM-2B와 SM25C의 마찰용접특성에 관한 연구 (A Study on the Properties in Friction Weldability of SCNCrM-2B and SM25C)

  • 이세경;심영만;민택기
    • 한국공작기계학회논문집
    • /
    • 제15권4호
    • /
    • pp.49-55
    • /
    • 2006
  • This study deals with the friction welding of SM25C and SCNCrM-2B; The friction time was variable conditions under the conditions of spindle revolution 2,000rpm, friction pressure of 100MPa, upset pressure of l50MPa, and upset time of 4.0 seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, and so the results were as follows. 1. When the friction time is 2.0 seconds, the tensile strength of friction welds was 874MPa, which is around as much as 117% of the tensile strength of base metal(SM25C), the bending strength of friction welds was 1,354MPa, which is around as much as 108.9% of the bending strength of base metal(SM25C). 2. At the same condition, the maximum vickers hardness was Hv443 at SCNCrM-2B nearby weld interface, which is higher Hv20 than condition of the friction time 0.5 seconds. 3. The results of microstructure analysis show that the structures of two base materials have fractionated and rearranged along a column due to heating and axial force during friction, which has affected in raising hardness and tensile strength.

강섬유 보강 초고성능 콘크리트의 전단 전달 모델 (Shear Transfer Strength Evaluation for Ultra-High Performance Fiber Reinforced Concrete)

  • 이지형;홍성걸
    • 한국공간구조학회논문집
    • /
    • 제15권2호
    • /
    • pp.69-77
    • /
    • 2015
  • Ultra High Performance Fiber Reinforced Concrete (UHPFRC) has a outstanding tensile hardening behaviour after a crack develops, which gives ductility to structures. Existing shear strength model for fiber reinforced concrete is entirely based on crack opening behavior(mode I) which comes from flexural-shear failure, not considering shear-slip behavior(mode II). To find out the mode I and mode II behavior on a crack in UHPFRC simultaneously, maximum shear strength of cracked UHPFRC is investigated from twenty-four push-off test results. The shear stress on a crack is derived as variable of initial crack width and fiber volume ratio. Test results show that shear slippage is proportional to crack opening, which leads to relationship between shear transfer strength and crack width. Based on the test results a hypothesis is proposed for the physical mechanics of shear transfer in UHPFRC by tensile hardening behavior in stead of aggregate interlocking in reinforced concrete. Shear transfer strength based on tensile hardening behavior in UHPFRC is suggested and this suggestion was verified by comparing direct tensile test results and push-off test results.

사형 주조 마그네슘 합금의 인장 특성에 미치는 합금 원소와 결정립 미세화의 영향 (Effects of Alloying Element and Grain Refinement on the Tensile Properties of Mg-Alloy Casted with Sand Mold)

  • 한재준;권해욱
    • 한국주조공학회지
    • /
    • 제31권4호
    • /
    • pp.212-217
    • /
    • 2011
  • The effects of alloying element and grain refinement on the tensile properties of magnesium alloy poured into sand mold were investigated. The strength of magnesium alloy was greatly increased by the addition of aluminium and that was increased with the increased aluminum content added up to 8.10 wt% and decreased beyond that. Even though the strength of Mg-8.10 wt%Al alloy was rather decreased by the addition of zinc, that was increased with increased zinc content added up to 0.50 wt% and decreased with the increased one beyond that. The maximum tensile strength was obtained with 0.50 wt%Mn added. The strength and elongation were simultaneously increased with grain refinement and the optimum amount of strontium addition for this was 0.30 wt%. The optimum chemical composition was obtained and the yield strength, tensile strength and elongation of the alloy with this composition were 90.2, 176.3MPa and 4.43%, respectively.

PBT/ABS 블렌드의 물성에 관한 연구 (A Study on the Mechanical Properties of PBT/ABS blends)

  • 이중희;윤기호;박민정
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.149-152
    • /
    • 2001
  • Poly-butylene-terephalate(PBT) can be impact modified by blending with ABS material. The effects of the type of compatibilizer and ABS content on the mechanical properties of PBT/ABS blend were examined in this study. EVA-g-GMA and three type of polycarbonates were used as the compatibilizer. As the GMA content in EVA-g-GMA was increased, the tensile strength of PBT/ABS blend increased and the impact strength of it decreased. With increasing the EVA-g-GMA content in PBT/ABS blend, the tensile strength and impact strength decreased. With PC compatibilizer, the tensile strength of PBT/ABS blend decreased as the ABS content increased. However, the maximum impact strength was observed in 20~30% ABS content range.

  • PDF

산화형 영구 염모제로 처리한 모발의 인장강도 특성에 관한 연구 (Study on the Tensile Strength of Oxidative Permanent Dyed Hair)

  • 이귀영;장병수
    • Applied Microscopy
    • /
    • 제38권4호
    • /
    • pp.339-345
    • /
    • 2008
  • 본 연구는 산화형 영구 염모제로 처리한 모발의 응력과 인장력을 건강모발과 비교하였으며, 인장시험 결과 절단된 모발의 미세구조를 주사전자현미경을 사용하여 관찰하였다. 염색모발의 인장강도는 $13.69\;g/cm^2$이었고 인장에너지는 $89.62\;erg/cm^2$로 나타났으며, 최고응력은 136.90g로 측정되었고 인장거리는 평균 11.34mm로 나타났다. 이와 같은 결과를 건강모발에 비교하였을 때 인장강도와 인장에너지, 최고응력이 각각 $0.97\;g/cm^2$, $18.38\;erg/cm^2$, 9.74 g 감소하였고 인장거리는 0.95 mm 짧게 나타났다. 결과적으로 염색모발이 건강모발보다 모발의 탄력성과 강도가 감소하는 것을 확인하였다. 건강모발과 염색모발의 인장강도 시험 후 절단되어 손상된 모발의 주사전자현미경 관찰에서 건강모발은 표면의 큐티클세포들이 들떠서 분리되어 있었으며, 염색모발의 큐티클세포들은 건강모발보다 더 심하게 분리되어 있었다. 염색모발에서 큐티클세포의 분리는 세포막사이 복합체의 파괴에 의해서 일어났다. 또한, 인장력에 의해서 찢어진 피질에는 거대 원섬유들이 노출되어 분리된 상태로 존재하였다.

열처리한 교정용 호선의 기계적 성질과 금속유리에 대한 연구 (THE EFFECTS OF HEAT TREATMENT ON MECHANICAL PROPERTIES AND METAL RELEASE FROM HEAT-TREATED ORTHODONTIC ARCHWIRES)

  • 최철민;이병태
    • 대한치과교정학회지
    • /
    • 제20권2호
    • /
    • pp.381-390
    • /
    • 1990
  • The purpose of this study was to evaluate the effects of heat treatment on mechanical properties in $0.016^{{\prime}{\prime}}{\times}0.022^{{\prime}{\prime}}$ blue Elgiloy wires and to measure the amounts of nickel and chromium released from the wires in artificial saliva. Ultimate tensile strength, yield strength and elongation were measured with universal testing machine (Instron). and the amounts of nickel and chromium released from the sample were measured with atomic absorption spectrophotometer after one week immersion in the artificial saliva. Ultimate tensile strength and yield strength were progressively increased below $1000^{\circ}F$, but elongation was decreased. And the results were reversed above $1100^{\circ}F$. After heat treatment of the sample for 9 minutes at $1000^{\circ}F$, the maximum tensile strength and yield strength were $213.6kg/mm^2$, $140.1kg/mm^2$, respectively. Both tensile strength and yield strength were decreased progressively above $1100^{\circ}F$. Elongation was appeared the minimum value (8.6%) after heat treatment for 9 minutes and 12 minutes at $1000^{\circ}F$. There was a pronounced increase in nickel and chromium liberation with increasing time and temperature. The maximum amounts of nickel and chromium released form the sample were $4.947{\mu}m/cm^2$, $3.088{\mu}g/cm^2$, respectively after heat treatment for 12 minutes at $1300^{\circ}F$. Heat treatment is applied to orthodontic wires, especially cobalt-chromium alloys, for the purpose of stress-relievning and hardening. When the heat-treatment of orthodontic wires, the heating procedure should be well controlled in order to have no effect on corrosion resistance and mechanical properties.

  • PDF

마그네틱 파우더 브레이크를 이용한 소형 진자형 충격시험기 개발 (Development of a Miniature Pendular Type Impact Testing Machine Using a Magnetic Powder Brake)

  • 유인동;이만석;김호경
    • Tribology and Lubricants
    • /
    • 제27권3호
    • /
    • pp.140-146
    • /
    • 2011
  • A miniature pendular type impact testing machine was designed and developed, adopting a magnetic powder brake in order to investigate tensile and shear behavior of a small solder ball at high speed. In this testing system, the potential energy of the pendulum is transferred into the impact energy during its drop. Then, the impact energy is transmitted through the striker which is connected to the push rods to push the specimen for tensile loading. The tensile behavior of lead-free solder ball in diameter of 760 ${\mu}m$ was successfully investigated in a speed range of 0.15 m/s~1.25 m/s using this designed device. The maximum tensile strength of the solder joint decreases with the loading speed in the testing condition. The maximum tensile strength of the joint was 56 MPa in the low speed region.

고강도콘크리트 부재의 균열폭 및 균열간격 계산에 관한 연구 (Calculation of Crack Width and Crack Spacing of High-Strength Concrete Members)

  • 정기오;이기열;김대중;김우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.227-232
    • /
    • 2002
  • This paper describes a calculation of an average crack spacing and the maximum crack width for the high-strength concrete tensile and flexural members. Based on the uniform bond stress distribution of the average steel and concrete strains over the transfer length, the crack spacing and the crack width are proposed to utilize influence of the concrete strength and the cover thickness. This analytical results presented in this paper indicate that the proposed equations can be more effectively estimated the maximum crack width and the average crack spacing of the reinforced concrete flexural and tensile members.

  • PDF

Ti-6Al-4V 합금의 단시간 고온 노출 시 모재 및 용접부의 인장강도 특성 (Effects on Tensile Strength of Base and Weld Metal of Ti-6Al-4V Alloy in Short Time Exposure to High Temperature)

  • 채병찬
    • 한국군사과학기술학회지
    • /
    • 제17권4호
    • /
    • pp.413-421
    • /
    • 2014
  • Since the structural temperature of a flight vehicle flying at high speed rises rapidly due to aerodynamic heating, it is necessary for optimum structural design to obtain proper material properties at high temperature by taking into account of its operational environment. For a special alloy, analysis data on strength change due to exposure time to high temperature are very limited, and most of them are for an exposure time longer than 30 minutes for long term operations. In this study, base and weld metal samples of Ti-6Al-4V alloy had been prepared and high temperature tensile tests with induction heating were performed, and then high temperature strength characteristics and strength recovery characteristics through cooling have been analyzed. Pre-tests to determine maximum heating rate were performed, and response characteristics for temperature control were confirmed. As a result, high temperature tensile strength appeared to be lower than that of room temperature, but it was higher than that of high temperature of 30 minite exposure listed in MMPDS. In strength recovery through cooling Ti-6Al-4V alloy has shown higher recovery rate compared with other alloys.

SKH51/SM45C의 마찰용접특성에 관한 연구 (A Study on Mechanical Properties and Friction Weldability of SKH51 and SM45C)

  • 이세경;민병훈;최수현;심도기;민택기
    • Journal of Welding and Joining
    • /
    • 제25권6호
    • /
    • pp.53-58
    • /
    • 2007
  • The present study examined the mechanical properties of the friction welding of shaft made of SKH51 and SM45C, of which the diameter is 12mm. Friction welding was done at welding conditions of 2,000rpm, friction pressure of 104MPa, upset pressure of 134MPa, friction time of 0.5sec to 2.5sec by increasing 0.5sec, upset time of 2 seconds. Under these conditions, a tensile test, a bending test, a shear test, a hardness test and a microstructure of weld interface were studied. When the friction time was 1.0 second under the conditions, the maximum tensile strength of the friction weld observed to be 963MPa, which is 89% the tensile strength of SKH51 base metal and 101% of the tensile strength of SM45C base metal. When the friction time was 1.0 seconds under the conditions, the maximum bending strength of the friction weld happened to be 1,647MPa, which is 78% the bending strength of SKH51 base metal(2,113MPa) and 87% of the bending strength of SM45C base metal(1,889MPa). When the friction time was 1.0 seconds under conditions, the maximum shear strength of the friction weld was observed to be 755MPa, which is 92% the shear strength of SKH51 base metal and 122% of the shear strength of SM45C base metal. According to the hardness test, the hardness distribution of the weld interface varied from Hv282 to Hv327. HAZ was formed from the weld interface to 1.2mm of SKH51 and 1.6mm of SM45C. Upon examination it was found that the microstructure became finer along with increase of friction revolution radius.