• 제목/요약/키워드: maximum stress theory

검색결과 143건 처리시간 0.028초

모자형 단면부재의 압괴특성 연구 (A Study on Crushing Characteristic of Hatted Section Tube)

  • 김천욱;한병기;김병삼
    • 한국자동차공학회논문집
    • /
    • 제10권2호
    • /
    • pp.212-219
    • /
    • 2002
  • In the frontal collision of cars, front parts of cars such as engine rail and side members that are composed of hatted section tubes should absorb most of the collision energy far the passenger compartment not to be deformed. For these reasons the study on the collapse characteristics, maximum crushing load and energy absorption capacity of hatted section tubes are needed. In this study, top hatted section tubes and double hatted section tubes are investigated. The maximum crushing load of hatted section tubes is induced from plastic buckling stress of plates by considering that the hatted section tubes are composed of plates with each different boundary conditions and that its material has a strain hardening effect. On this concept maximum crushing load equations of hatted section tubes are derived and verified by experiments. from the results of experiment, the differences of collapse characteristics between top hatted section tube and double hatted section tube are analysed. And mean crushing loads of hatted section tubes from experiments are compared with other theory.

복합적층 회전원판의 응력 및 진동 해석 (Stress and Vibration Analysis of Rotating Laminated Composite Disks)

  • 구교남
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.982-989
    • /
    • 2006
  • The centrifugal force acting on a rotating disk creates the in-plane loads in radial and circumferential directions. Application of fiber reinforced composite materials to the rotating disk can satisfy the demand for the increment of its rotating speed. However, the existing researches have been confined to lamina disks. This paper deals with the stress and vibration analysis of rotating laminated composite disks. The maximum strain theory for failure criterion is applied to determine the strength of the laminate disk from which the maximum allowable speed is obtained. Dynamic equation is formulated in order to calculate the natural frequency and critical speed for rotating laminated disks. The Galerkin method is applied to obtain the series solution. The numerical results are given for the cross-ply laminated composite disks.

트러스 모델에 의한 철근콘크리트 저형 전단벽의 전단강도 (Shear Strength of Inn-Rise Reinforced Concrete Shear Walls with Truss Model)

  • 윤현도;최창식;이리형
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.97-102
    • /
    • 1992
  • To predict the shear strength of low - rise reinforced concrete shear walls with boundary elements, truss model theory considering the Vecchio - Collins stress - strain curve for softened concrete is applied. The model transforms cracked shear walls with a truss which consists of vertical bar. horizontal bar and diagonal concrete strut, and is based on equilibrium and compatibility conditions among three truss components, as well as stress - strain relationship considered for softening in diagonal concrete strut. In barbell specimens(M/VD = 0.75. fc = 420 kg/$\textrm{cm}^2$), the ratio of experimental to analytical maximum shear strength was within 0.83 ν$_{exp}$. / ν$_{cal}$. 1.25 with a relatively good agreement. As a result, the truss model was observed to be capable of predicting the maximum shear strength wi th a reasonable accuracy.acy.

  • PDF

유한요소해에 기초한 양축등가 잔류응력 평가 압입이론 (An Indentation Method Based on FEA for Equi-Biaxial Residual Stress Evaluation)

  • 이진행;이형일
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.42-51
    • /
    • 2006
  • An indentation method to determine equi-biaxial residual stress is proposed by examining the data from the incremental plasticity theory based finite element analyses. We first select optimal normalized-parameters, which are minimally affected by indentation depth and material properties. Numerical linear regressions of obtained data exhibit that maximum load and contact area of imprint are the main parameters measuring the residual stress. The proposed indentation approach provides a substantial enhancement in accuracy compared with the prior methods.

인장-전단 하중을 받는 점용접부의 피로 수명 평가에 관한 연구 (A Study on the Fatigue Life Evaluation of Spot Welded Joints under Tensile-Shear Loading)

  • 정강;김훈
    • 동력기계공학회지
    • /
    • 제5권1호
    • /
    • pp.80-88
    • /
    • 2001
  • The spot welding method has been used in the joining of structures, automotive body, railway carriage, aircraft, household electric appliances, precision parts etc., because of brief working, easy automation, available mass production, and convenience. In this paper, the effects of welding conditions on the fatigue life and the prediction of fatigue life based on fracture mechanics theory of spot welded joint were investigated. Fatigue tests were conducted with the tensile-shear specimens welded in the various current using cold rolled steel sheets. Fatigue life of spot welded joint was predicted and compared with experimental results. Using FEM(finite element method), we analysed the distribution of stress and the condition of deformation on the environments of nugget.

  • PDF

유리 압축 실험에서의 복굴절 분포 예측 (Prediction of Birefringence Distribution in Cylindrical Glass Compression Test)

  • 이주현;나진욱;임성한;오수익
    • 소성∙가공
    • /
    • 제13권6호
    • /
    • pp.509-514
    • /
    • 2004
  • An analysis using FEM simulation was conducted to predict residual stresses and birefringence in simple compressed cylindrical glass as a preliminary part of the optimum design determination of optical lenses. The FEM simulation with the Maxwell viscoelastic constitutive model was used to predict thermal induced residual stresses and birefringence during the compression test considering stress relaxation. Also the linear photoelastic theory was introduced to calculate birefringence from the residual stress state. The error of simulation results between experimental results in the birefringence value at the center of glass specimen is $4.2\%$, and the error in the maximum radius of deformed glass specimen is $1.2\%$. The simulation results were in good agreement with deformation and birefringence distribution in the existing experimental result.

섬유판 제작용 압연프레스 가열드럼의 피로수명 해석과 구조설계 개선에 관한 연구 (Fatigue Life Analyses and Improvement of Structural Design of a Heating Drum for the Medium Density Fiberboard)

  • 이부윤
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권2호
    • /
    • pp.202-208
    • /
    • 2005
  • Stress and fatigue life analyses are performed to enhance a fatigue life of a heating drum of the roller press for medium density fiberboard. The finite element method employing the submodel is used to analyze stress concentration in the journal of the heating drum. The fatigue life is evaluated by the stress-life theory. Two modified designs of the journal are suggested and evaluated to reduce the maximum stress and to increase the fatigue life Their structural reliabilities are verified in terms of the yield strength and the design life.

절리암반내 터널라이닝 거동에 관한 실험적 연구 (An experimental study on behavior of tunnel in jointed rock mass)

  • 오영석;박용원;윤효석
    • 한국터널지하공간학회 논문집
    • /
    • 제6권4호
    • /
    • pp.315-326
    • /
    • 2004
  • 터널 주변지반에 다양한 형태로 존재하는 불연속면이 터널 라이닝의 거동에 미치는 영향을 규명하기 위해, 주절리의 각도와 지반의 측압조건을 변화시켜가면서 실내모형실험을 수행하였다. 실험결과, 터널라이닝에 발생하는 축력은 터널 주변지반에 존재하는 절리의 방향 및 위치에 따라 대체로 감소하는 경향을 나타내며, 이러한 경향은 측압계수가 증가함에 따라 더욱 두드러진 양상을 보이고 있다. 또한 절리각도에 따라 터널라이닝에 발생하는 최대변위와 최대응력의 발생위치가 달라지며, 절리의 영향으로 측압계수가 증가함에 따라 접선응력과 법선응력이 최대 20배 이상의 차이를 보이며, 전반적으로 터널 라이닝에는 인장응력이 집중되는 경향을 탄성이론을 통해 확인하였다.

  • PDF

항공기 엔진 지지구조물의 피로수명 해석에 관한 연구 (Study on Fatigue Life Estimation for Aircraft Engine Support Structure)

  • 허장욱
    • 대한기계학회논문집A
    • /
    • 제34권11호
    • /
    • pp.1667-1674
    • /
    • 2010
  • 항공기 구조는 신뢰성 보장을 위해 피로하중에 대한 수명예측이 중요한 분야로 고려되고 있다. 본 논문에서는 항공기 비행안전과 가장 밀접한 엔진 지지구조물을 대상으로 S-N 곡선과 등가응력을 이용하여 선형누적손상 이론을 적용한 피로수명 해석을 수행하였다. 내추락 하중 조건에서 정적강도 해석의 최대응력은 가위형 링크 부위에 1,080MPa를 나타내었으며, 이는 온도감소계수를 적용한 허용응력보다 약 5%의 여유를 가지고 있다. 피로하중 조건에서 최대응력은 가위형 링크 부위에 876MPa로 가장 높았으며, 이 때 응력방정식 계수도 0.019MPa/N으로 최대를 나타내었다. 피로수명 해석에 의한 안전수명은 가위형 링크 상단부에 있는 프레팅 영역이 416,667H이고, 다른 부위는 무한수명이 산출되어, 항공기 엔진 지지구조물(가위형 링크, 직선형 링크)은 피로수명 요구도를 충족하는 것으로 확인되었다.

지역난방용 매설배관의 열응력 흡수에 관한 연구 (A Study on the Absorption of Thermal Stress on the Underground piping for the District heating)

  • 공재향;신병국
    • 한국공작기계학회논문집
    • /
    • 제14권1호
    • /
    • pp.81-88
    • /
    • 2005
  • There have been many studies on generation equipment and plant piping, but there is no significant study result on the heat transportation pipe. As such, this study established basic theory on the compensated method among buried pipe for regional heating, and further obtained the following results by applying the conditions of AGFW and NCHPP respectively in calculation of friction and maximum installation distance for the buried pipe. Friction coefficient according to the types and physical properties of soil, friction and maximum installation distance were compared to set the application value of friction coefficient according to the location of works. Calculation formula of clay load to be applied for calculation of friction was introduced to the formula of AGFW and the formula of NCHPP that has been used in Nowon district since 1997 to determine the difference and applicability. $120^{\circ}C$ and $95^{\circ}C$ were applied in temperature difference for expansion volume to compare the arm length at the curve pipe so thai it can be reflected in the design in the future. Maximum installation distance according to thickness of pipe was compared to present the necessity of unified specification so that same kinds of pipe materials can be used for same kinds of works.