• Title/Summary/Keyword: maximum run-up height

Search Result 24, Processing Time 0.023 seconds

Generation and Propagation of Edge Wave (Edge wave의 발생과 전파)

  • 조용식;이봉희
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.71-74
    • /
    • 1995
  • Edge wave는 해안선 근처에서 갇힌(trapped) 파의 한 형태로써, 해안선 근처에서의 산사태(Yeh and Chang, 1994) 또는 지진해일(tsunami)이 해안선에 도달한 후 해안선과의 상호간섭(Shuto, 1990)에 의해서 발생한다. Edge wave는 해안선을 따라 최대 처오름 높이(maximum run-up height)를 유지하며 진행하기 때문에 범람으로 인한 인명 및 재산피해를 야기시킬 수 있으므로 이에 관한 정확한 해석은 매우 중요하다. (중략)

  • PDF

Reliability Analysis of Wave Overtopping over a Seawall (호안에서의 월파에 대한 신뢰성 해석)

  • Oh Jung-Eun;Suh Kyung-Duck;Kweon Hyuck-Min
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.1
    • /
    • pp.69-83
    • /
    • 2006
  • A Level 3 reliability analysis has been performed for wave run-up and overtopping on a sloping seawall. A Monte-Carlo simulation was performed considering the uncertainties of various variables affecting the wave overtopping event. The wave overtopping probability was evaluated from the individual wave run-up by using the wave-by-wave method, while the mean overtopping rate was calculated directly from the significant wave height. Using the calculated overtopping probability and mean overtopping rate, the maximum overtopping volume was also calculated on the assumption of two-parameter Weibull distribution of individual wave overtopping volume. In addition, by changing wave directions, depths, and structure slopes, their effects on wave overtopping were analyzed. It was found that, when the variability of wave directions is considered or the water depth decreases toward shore, wave height become smaller due to wave refraction, which yields smaller mean overtopping rate, overtopping probability and maximum overtopping volume. For the same mean overtopping rate, the expected overtopping probability increases and the expected maximum overtopping volume decreases as approaching toward shore inside surfzone.

Kinematic Analysis of Women's Long Jump at IAAF World Championships, Daegu 2011 (2011 대구세계육상선수권대회 여자 멀리뛰기 경기의 운동학적 분석)

  • Kim, Ho-Mook;Woo, Sang-Yeon;Kim, Yong-Woon;Nam, Ki-Jeong;Park, Yong-Hyun;Seo, Jung-Suk
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.603-610
    • /
    • 2011
  • The long jump motions of 8 finalists in the women's long jump at the IAAF World Championships, Daegu 2011 were analyzed, and the kinematic characteristics of their techniques were investigated. The kinematic characteristics of the long jump motion of the 8 finalists were as follows. In the run-up phase, the length of the 2 stride was $108{\pm}6.92%$ that of the 3 stride. The length of the 1 stride was $91{\pm}5.78%$ that of the 2 stride. The change in the height of the center of gravity was $0.07{\pm}0.03$ m. The maximum velocity during the run-up phase was $9.44{\pm}0.13$ m at the 1 stride. In the take-off phase, the horizontal velocity, vertical velocity, reduction in horizontal velocity were $7.80{\pm}0.15$ m/s, $2.96{\pm}0.14$ m/s, and $1.64{\pm}0.19$ m/s, respectively. The minimum knee angle and take-off angle were $151{\pm}8.89^{\circ}$ and $20.7{\pm}1.03^{\circ}$, respectively. In the flight phase, the flight time and maximum height of the center of gravity were $0.78{\pm}0.03$ s, and $1.60{\pm}0.05$ m, respectively. In the landing phase, the landing length was $0.50{\pm}0.07$ m. The trunk angle, knee angle, and hip angle were $74{\pm}18.75^{\circ}$, $131{\pm}10.45^{\circ}$, and $82{\pm}9.03^{\circ}$, respectively. The kinematic characteristics of the motion of a good long jump were as follows. The reduction in the horizontal velocity in the take-off phase was minimized, and the maximum velocity of the run-up was maintained. The vertical velocity in the take-off phase was increased using a rapidly extended knee and high center of gravity.

Analysis of Variability for the Components of VGRF Signal via Increasing the Number of Attempt during Running (달리기 시도 수 증가에 따른 VGRF 신호 성분의 Variability 분석)

  • Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.17 no.1
    • /
    • pp.129-134
    • /
    • 2007
  • The purpose of this study was to determine the variability of components of the vertical ground reaction force signal to seek the suitable number of attempt datum to be analyzed during running at 2m/s and 4m/s. For this study, six subjects (height mean:$174.5{\pm}4.4cm$, weight $671.5{\pm}116.4N.$, age:$25.0{\pm}yrs.$) were selected and asked to run at least 3 times each run condition randomly. FFT(fast Fourier transform) was used to analyze the frequency domain analysis of the vertical ground reaction forces signal and an accumulated PSD (power spectrum density) was calculated to reconstruct the certain signal. To examine the deviation of the vertical ground reaction between signals collected from an different number of attempt, variability of frequency, magnitude of passive peak, time up to the passive peak and maximum load rate were determined in a coefficient of variance. The variability analysis revealed that when analyze the vertical reaction force components at 2m/s speed running, which belongs to slow pace relatively, it would be good to calculate these components from signal of one attempt, but 4m/s speed running needs data collected from two attempts to decrease the deviation of signal between attempts. In summary, when analyzing the frequency and passive peak of the vertical reaction force signal during the fast run, it should be considered the number of attempt.

Field survey of 1983 central East Sea Tsunami : Imwon Port (1983년 동해 중부 지진해일 현장조사 : 임원항)

  • Kim, Sung-Min;Lee, Seung-Oh;Choi, Moon-Kyu;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.4
    • /
    • pp.97-105
    • /
    • 2007
  • This study has been focus to certify the run-up heights, losses of human lives and property damages due to the 1983 Central East Sea tsunami. We have conducted the interview with indigenous inhabitant and field surveying at the Imwon port, East sea in Korea in order to inquire into the state of things occurred during that period. It is also investigated how much well they are aware of the emergency action plan including the evacuation system. Base on the reliable interviews, we selected and surveyed 10 places at the Imwon port, where the historical maximum overflowing occurred due to the 1983 Central East Sea tsunami. The measured run-up heights are approximately $3.3m{\sim}4.0m$ at the selected 10 places and it is found that the sea water ran over the banks in Imwon stream about 700m upstream from the Imwon port. From this study we can suggest supplementing the present emergency action plan and supply the state-of-the-art inundation map.

Tsunami Hazard Evaluation for the East Coast of Korea by using Empirical Tsunami Data (경험자료에 의한 동해안의 지진해일 재해도 평가)

  • Kim, Min-Kyu;Choi, In-Kil;Kang, Keum-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.17-22
    • /
    • 2010
  • In this study, a tsunami hazard curve was determined for a probabilistic safety assessment (PSA) of a tsunami event at a Nuclear Power Plant site. A Tsunami catalogue was developed by using the historical tsunami record prior to 1900 and the instrumental tsunami record after 1900. For the evaluation of the return period of the tsunami run-up height, power-law, upper-truncated power law and exponential function were considered for the assessment of regression curves and each result was compared. Although there were in total only 9 tsunami records on the east coast of Korea during the time period of the tsunami catalogue, there is no research like this about tsunami hazard curve evaluation, so this research lays a foundation for probabilistic tsunami hazard assessment (PTHA)

Inundation Simulation of Underground Space using Critical Dry Depth Scheme (임계 마름 수심기법을 이용한 지하공간 침수 모의)

  • Rhee, Dong Sop;Kim, Hyung-Jun;Song, Chang Geun
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.6
    • /
    • pp.63-69
    • /
    • 2015
  • In this study, a 2D hydrodynamic model equipped with critical dry depth scheme was developed to reproduce the flow over staircase. The channel geometry of hydraulic experiment conducted by Ishigaki et al. was generated in the computational space, and the developed model was validated against flow properties such as discharge, velocity and momentum. In addition, the water surface profile and the velocity distribution evolved in flow over two layers staircases were analyzed. When the initial water depth at the upper floor was 0.3 m, the maximum velocity at lower floor was 4.2 m/s, and the maximum momentum was $1.2m^3/s^2$, and its conversion to force per unit width was 1.2 kN/m. This value was equivalent to the hydrostatic force with 50 cm water depth, and evacuation became difficult, as proposed by Ishigaki et al. For the flow over staircases connecting two layers, the maximum run-up height in flat part connecting two layers was approximately two times higher than the initial water depth in upper floor, and the rapid shock wave with sharp front and long tail was propagated.

Kinematic Analysis of the Men's Long Jump in the IAAF World Championships Daegu 2011 (2011 대구세계육상선수권대회 남자 멀리뛰기 경기의 운동학적 분석)

  • Seo, Jung-Suk;Woo, Sang-Yeon;Kim, Yong-Woon;Nam, Ki-Jeong;Park, Yong-Hyun;Kim, Ho-Mook
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.5
    • /
    • pp.595-602
    • /
    • 2011
  • The long jump motion of 8 finalist of men's long jump of IAAF World Championships Daegu 2011 were analysed and the kinematic characteristics of the technique were investigated. The kinematic characteristics of long jump motion of 8 finalist were as follows. In the run-up phase, the average length of 3, 2, and 1 stride were $2.21{\pm}0.08$ m, $2.46{\pm}0.18$ m, and $2.19{\pm}0.16$ m, respectively. The change in the height of the center of gravity was $0.09{\pm}0.02$ m. The average velocity of 3, 2, and 1 stride was $10.37{\pm}0.32$ m/s, $9.63{\pm}0.32$ m/s, and $10.69{\pm}10.69$ m/s, respectively. In the take-off phase, the horizontal velocity, the vertical velocity, the reduction of horizontal velocity was $9.00{\pm}0.37$ m/s, $3.04{\pm}0.27$ m/s, and $1.69{\pm}0.34$ m/s, respectively. The minimum knee angle and the take off angle was $157{\pm}6.57^{\circ}$ and $18.5{\pm}2.24^{\circ}$, respectively. In the flight phase, the flight time and the maximum height of the center of gravity was $0.82{\pm}0.05$ s, and $1.70{\pm}0.10$ m, respectively. In the landing phase, the landing length was $0.51{\pm}0.06$ m. The body angle, the knee angle, and the hip angle was $71{\pm}20.93^{\circ}$, $136{\pm}19.19^{\circ}$, and $85{\pm}9.58^{\circ}$, respectively. The kinematic characteristics of long jump motion with good record were shown as follows. The reduction of the horizontal velocity in the take-off phase was minimized while the velocity of the run-up were maximally maintained. The vertical velocity in the take-off phase was increased with rapidly extended knee and the high center of gravity.

3D numerical modeling of impact wave induced by landslide using a multiphase flow model (다상흐름 모형을 이용한 산사태 유발 수면충격파 3차원 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.11
    • /
    • pp.943-953
    • /
    • 2021
  • The propagation of impact wave induced by landslide and debris flow occurred on the slope of lake, reservoir and bays is a three-dimensional natural phenomenon associated with strong interaction of debris flow and water flow in complex geometrical environments. We carried out 3D numerical modeling of such impact wave in a bay using a multiphase turbulence flow model and a rheology model for non-Newtonian debris flow. Numerical results are compared with previous experimental result to evaluate the performance of present numerical approach. The results underscore that the reasonable predictions of both thickness and speed of debris flow head penetrating below the water surface are crucial to accurately reproduce the maximum peak height and free surface profiles of impact wave. Two predictions computed using different initial debris flow thicknesses become different from the instant when the peaks of impact waves fall due to the gravity. Numerical modeling using relatively thick initial debris flow thickness appears to well reproduce the water surface profile of impact wave propagating across the bay as well as wave run-up on the opposite slope. The results show that the maximum run-up height on the opposite slope is not sensitive to the initial thickness of debris flows of same total volume. Meanwhile, appropriate rheology model for debris flow consisting of inviscid particle only should be employed to more accurately reproduce the debris flow propagating along the channel bottom.

Application of Practical Dispersion-Correction Scheme for Simulation of Tsunami Propagation (지진해일 전파 수치해석을 위한 실용적인 분산보정기법 적용)

  • Choi, Moon-Kyu;Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.4
    • /
    • pp.145-152
    • /
    • 2008
  • The initial wave lengths of tsunamis can be several tens to hundreds kilometers. Thus, the importance of the frequency dispersive effects in proportion to variation of the wave length, and should be properly considered in numerical simulation of tsunami propagation for a better accuracy. Recently, a practical dispersion-correction scheme has been developed by adding dispersion-correction terms(Cho et al., 2007). The new model employing the numerical technique has been verified by comparing numerical results with available analytic solutions, however, the new model has not yet been applied on a real topography. In this study, the new model is applied on a real topography and its applicability is examined. To study the applicability of the new model, two historical tsunami events are simulated for Sokcho, Mukho and Pohang harbors, with the tide gage records. Numerical results, the arrival time and the maximum water level at the tidal stations, are compared with observed data at each harbor.