• 제목/요약/키워드: maximum moment

Search Result 908, Processing Time 0.028 seconds

Inelastic Time History Analysis of a Five-Story Steel Framed Structure Considering Rigidity of TSD Connection (TSD 접합부의 강성을 고려한 5층 철골골조구조물의 비탄성 시간이력해석)

  • Kang, Suk-Bong;Lee, Jae-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.281-291
    • /
    • 2010
  • In this study, a five-story steel frame was designed in accordance with KBC2005 to evaluate the effects of the beam-column connection on the structural behavior. The connections were designed as fully rigid and semi-rigid. The fiber model was used to describe the moment-curvature relationship of the steel beam and the column, the power model for the moment-rotation angle of the semi-rigid connection and the three-parameter model for the hysteretic behavior of the steel beam, column, and connection. The structure was idealized as separate 2-D frames and as connected 2-D frames. The peak ground accelerations of four earthquake records were modified in a time-history analysis for the levels of the mean return period and for the maximum base-shear force in a pushover analysis. The top story displacement, base-shear force, story drift, demanded ductility ratio for the semi-rigid connection, maximum bending moment of the column, beam, and connection, and distribution of the plastic hinge were examined in the time-history analysis. The frame with the semi-rigid connection yielded a lower base-shear force, less magnitude, and increasing ratio in the bending moment of the column, beam, and connection than the frame with a fully rigid connection. The TSD connection was deemed to have secured the economy and safety of the sample structure that was subjected to seismic excitation for the Korean design level.

Gait Analysis of Patients with Tumor Prosthesis around the Knee (인공 종양대치물을 이용한 사지구제술후의 보행 분석)

  • Lee, Sang-Hoon;Chung, Chin-Youb;Kim, Han-Soo;Kim, Byung-Sung;Lee, Han-Koo
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.3 no.1
    • /
    • pp.18-25
    • /
    • 1997
  • Prosthetic replacement is one of the most common methods of reconstruction after resection of malignant tumor around the knee. Gait analysis provides a relative objective data about the gait function of patients with prosthesis. The purpose of this study was to compare the gait pattern of the patients who underwent limb salvage surgery with prosthesis for distal femur and that of patients with prosthesis for proximal tibia. This study included ten patients (4 males, 6 females, mean age 22.7 years, range 14-36) who underwent a wide resection and Kotz hinged modular reconstruction prosthesis replacement and six normal adult(Control). The site of bone tumor was the distal femur (Group 1) in six patients and proximal tibia (Group 2) in 4 patients. The follow-up period ranged from 15 to 82 months (mean : 33 months). The evaluation consisted of clinical assessment, radiographic assessment, gait analysis using VICON 370 Motion Analysis System. The gait analysis included the linear parameters such as, walking velocity, cadence, step length, stride length, stance time, swing time, single support and double support time and the three-dimensional kinematics (joint rotation angle, velocity of joint rotation) of ankle, knee, hip and pelvis in sagittal, coronal and transverse plane. For the kinetic evaluation, the moment of force (unit: Nm/kg) and power (unit: Watt/kg) of ankle, knee and hip joint in sagittal, coronal and transverse plane. In the linear parameters, cadence, velocity, step time and single support were decreased in both group 1 and group 2 compared with control. Double support decreased in group 2 compared with control significantly(p<.05). In contrast to our hypothesis, there was no significant difference between group 1 and group 2. In Kinematics, we observed significant difference (p<.05) of decreased knee flexion in loading response (G2

  • PDF

Evaluation of Lateral Subgrade Reaction Coefficient Considering Empirical Equation and Horizontal Behavior Range of Large Diameter Drilled Shaft (경험식을 통한 대구경 현장타설말뚝에 대한 수평지반반력계수와 수평거동 영향범위의 평가)

  • Yang, Woo-Yeol;Hwang, Tae-Hyun;Kim, Bum-Joo;Park, Seong-Bak;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.19 no.2
    • /
    • pp.1-11
    • /
    • 2020
  • The lateral bearing characteristics of large diameter drilled shaft depend greatly on the stiffness of the pile, horizontal subgrade reaction of adjacent ground. In particular, the empirical evaluation results of the horizontal subgrade reaction coefficient which are widely used in pile design are very important factors in evaluating the lateral bearing capacity of drilled shaft because the difference in bearing capacity depends on the estimated result. Nevertheless, the evaluation of the horizontal subgrade reaction coefficient on the large diameter drilled shaft is insufficient. In addition, although the range of influence and the location of the maximum moment which is the weaken zone on the pile may be correlated and relationship of these are major consideration in determining the reinforced zone of drilled shaft, the previous studies have not been evaluated it. In this study, the field test and nonlinear analysis of large diameter drilled shaft were performed to evaluate the horizontal subgrade reaction coefficient and to investigate the relationship between the influence range 1/β of the pile and the location of the maximum moment zm. In the result, the lateral bearing capacity of drilled shaft showed a difference in results by about 190% according to the empirical equation on the horizontal subgrade reaction coefficient. And the relationship between the influence range of the pile and the location of the maximum moment was evaluated as a linear relationship depending on the soil density.

Kinematic and Ground Reaction Force Analyses of the Forehand Counter Drive in Table Tennis (탁구 포핸드 카운터 드라이브 동작의 운동학적 변인 및 지면 반력 분석)

  • Lee, Young-Sik;Lee, Chong-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.20 no.2
    • /
    • pp.155-165
    • /
    • 2010
  • The purpose of this study was to analyze kinematic quantitative factors required of a forehand counter drive in table tennis through 3-D analysis. Four national table tennis players participated in this study. The mean of elapsed time for total drive motion was $1.009{\pm}0.23\;s$. At the phase of impact B1 was the fastest as 0.075 s. This may affect efficiency in the initial velocity and spin of the ball by making a powerful counter drive. The pattern of center of mass showed that it moved back and returned to where it was then moved forward. At the back swing, lower stance made wide base of support and a stronger and safer stance. It may help increasing the ball spin. Angle of the elbow was extended up to $110.75{\pm}1.25^{\circ}$ at the back swing and the angle decreased by $93.75{\pm}3.51^{\circ}$ at impact. Decreased rotation range of swinging arm increased linear velocity of racket-head and impulse on the ball. Eventually it led more spin to the ball and maximized the ball speed. Angle of knee joint decreased from ready position to back swing, then increased from the moment of the impact and decreased at the follow thorough. The velocity of racket-head was the fastest at impact of phase 2. Horizontal velocity was $7796.5{\pm}362\;mm/s$ and vertical velocity was $4589.4{\pm}298.4\;mm/s$ at the moment. It may help increase the speed and spin of the ball in a moment. The means of each ground reaction force result showed maximum at the back swing(E2) except A2. Vertical ground reaction force means suggest that all males and females showed maximum vertical power(E2), The maximum power of means was $499.7{\pm}38.8\;N$ for male players and $519.5{\pm}136.7\;N$ for female players.

Numerical analysis of sheet pile wall structure considering soil-structure interaction

  • Jiang, Shouyan;Du, Chengbin;Sun, Liguo
    • Geomechanics and Engineering
    • /
    • v.16 no.3
    • /
    • pp.309-320
    • /
    • 2018
  • In this paper, a numerical study using finite element method with considering soil-structure interaction was conducted to investigate the stress and deformation behavior of a sheet pile wall structure. In numerical model, one of the nonlinear elastic material constitutive models, Duncan-Chang E-v model, is used for describing soil behavior. The hard contact constitutive model is used for simulating the behavior of interface between the sheet pile wall and soil. The construction process of excavation and backfill is simulated by the way of step loading. We also compare the present numerical method with the in-situ test results for verifying the numerical methods. The numerical analysis showed that the soil excavation in the lock chamber has a huge effect on the wall deflection and stress, pile deflection, and anchor force. With the increase of distance between anchored bars, the maximum wall deflection and anchor force increase, while the maximum wall stress decreases. At a low elevation of anchored bar, the maximum wall bending moment decreases, but the maximum wall deflection, pile deflection, and anchor force both increase. The construction procedure with first excavation and then backfill is quite favorable for decreasing pile deflection, wall deflection and stress, and anchor forces.

An Analytical Study on Inclination of Vertical Piles (연직말뚝의 경사도 오차에 관한 해석적 연구)

  • 장정욱;박춘식;최차석
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.463-468
    • /
    • 2003
  • This paper studied the effects of inclination of piles on pile behaviors. The following are the conclusions of this study. (1) When all the piles are inclined to a same direction, the piles reaction, maximum moment and horizontal displacement of footing increase as the angle of inclination increases. (2) When the piles of each opposite side are inclined symmetrically, the vertical reaction either increases or decreases in proportion to the angle of inclination. In this case, the vertical reaction of inclined piles decreases but the vertical reaction of non-Inclined piles increases.

  • PDF

Estimations in a skewed uniform distribution

  • Son, Hee-Ju;Woo, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.20 no.4
    • /
    • pp.733-740
    • /
    • 2009
  • We obtain a skewed uniform distribution by a uniform distribution, and evaluate its coeffcient of skewness. And we obtain the approximate maximum likelihood estimator (AML) and moment estimator of skew parameter in the skewed uniform distribution. And we compare simulated mean squared errors (MSE) of those estimators, and also compare MSE of two proposed reliability estimators in two independent skewed uniform distributions each with different skew parameters.

  • PDF

ON SIZE-BIASED POISSON DISTRIBUTION AND ITS USE IN ZERO-TRUNCATED CASES

  • Mir, Khurshid Ahmad
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.3
    • /
    • pp.153-160
    • /
    • 2008
  • A size-biased Poisson distribution is defined. Its characterization by using a recurrence relation for first order negative moment of the distribution is obtained. Different estimation methods for the parameter of the model are also discussed. R-Software has been used for making a comparison among the three different estimation methods.

  • PDF

Flexural Analysis of HPFRCC Beam Considering Multiple Cracks (다중균열분산특성을 고려한 HPFRCC부재의 휨해석)

  • Jang, Kyu-Hyeun;Shin, Kyung-Joon;Shin, Yong-Seok
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.369-372
    • /
    • 2006
  • In this paper, analysis method of HPFRCC is proposed as predicting properties flexural behavior. For analyzing HPFRCC beam, properties of strain-hardening, multiple cracking, and crack spacing control are considered as non-homogeneous material properties of the beam. This paper focused on the deflection, maximum moment of the flexural beam, distribution of crack width with the monte carlo simulation.

  • PDF

The Approximate MLE in a Skew-Symmetric Laplace Distribution

  • Son, Hee-Ju;Woo, Jung-Soo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.2
    • /
    • pp.573-584
    • /
    • 2007
  • We define a skew-symmetric Laplace distribution by a symmetric Laplace distribution and evaluate its coefficient of skewness. And we derive an approximate maximum likelihood estimator(AME) and a moment estimator(MME) of a skewed parameter in a skew-symmetric Laplace distribution, and hence compare simulated mean squared errors of those estimators. We compare asymptotic mean squared errors of two defined estimators of reliability in two independent skew-symmetric distributions.

  • PDF