J. KSIAM Vol.12, No.3, 153-160, 2008

ON SIZE-BIASED POISSON DISTRIBUTION AND ITS USE IN
ZERO-TRUNCATED CASES

KHURSHID AHMAD MIR !

! DEPARTMENT OF STATISTICS, GOVT. DEGREE COLLEGE (BOYS), BARAMULLA, JAMMU AND KASHMIR,
INDIA
E-mail address: khrshdmir@yahoo.com

ABSTRACT. A size-biased Poisson distribution is defined. Its characterization by using a re-
currence relation for first order negative moment of the distribution is obtained. Different esti-
mation methods for the parameter of the model are also discussed. R-Software has been used
for making a comparison among the three different estimation methods.

1. INTRODUCTION

The probability function of the Poisson distribution is given as

P(X =xz)=¢ %"/x!, x=0,1,2..... (1
David and Johnson [5] defined the decapitated Poisson distribution with probability function
as

P (X =z)=e¢%"/z!(1 —e ), x=1,2... ()
Murakami [9] discussed the maximum likelihood estimator of the model (2). David and
Johnson [5] studied the estimator of the model (2) based on the sample moments. They also
derived the maximum likelihood estimator (MLE) of «, its asymptotic variance and efficiency
by the method of moments. Placket [10] put forward a similar estimate of « in order to show
that it is highly efficient. Tate and Goen [12] obtained minimum variance unbiased estimation
and Cohen ([3],[4]) provided the estimation of the model (2) from the sample that are truncated
on the right. Ayesha and Ahmad [1] studied the inverse ascending factorial moments and the
estimation of the parameter of hyper-Poisson distribution using negative moments. Munir and
Roohi [8] have discussed the characterization of the Poisson distribution. A brief list of authors
and their substantial works can be seen in Johnson and Kotz [6] and Johnson, Kotz and Kemp
[7].
In this paper, the size-biased Poisson distribution (SBPD) is defined and the characterization
of the model is obtained by using a recurrent relation for its first order negative moment. The
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estimates have been obtained by employing the moments, maximum likelihood and Bayesian
method of estimation. In order to make a comparative analysis among the three estimation
methods for the parameter of the size-biased Poisson distribution (SBPD), one of the standard
software packages R- Software is used which is meant for data analysis and graphics. It is
freely available on internet.Its resemblance with the S-PLUS software makes it more useful.
(See http://cran-project.org and Bates [2]).

2. SIZE-BIASED POISSON DISTRIBUTION(SBPD)
The size-biased Poisson distribution is obtained by taking the weights of the Poisson distri-

oo
bution (1) as x. Then,we have ) zP(X = x) = «, which gives the probability function of

=0
size-biased Poisson distribution as
Py(X=x)=e %" (z—1), a>0,x=1,2..., 3)
The moment generating function of the distribution (3) is given by
M, (1) = e@eltte'e) )
By using the relation (4), the mean and variance of the distribution are given as
W =1+a (5)
P2 =« (0)

3. RECURRENCE RELATION

In this section, we use a property of hyper-geometric series function and give an alternate
method of deriving the recurrence relation for the negative moment of size-biased Poisson
distribution.

Theorem 1. : Suppose X has a size-biased Poisson distribution with parameter o , then for

A>1 the relation 14
EX+A) ' '=--ZBX+A-1"! (7)
« «

holds.

Proof. Since X is a size-biased Poisson variate with parameter « , then

o0

1
—1 _ o
E(X+A)™ = ;Aw+)&px_@
= e “(A+1) MR [A+1;A42;q] (8)
where (A+1)  (A+1)(A+2)
1 . e ] — 2
F1[A+1,A+2704]f1+( +2)a+( o) +3)a .......
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Replacing A by A-1, we get

EX+A-1)"=e*A VR [A;A+1;0] )

The R.H.S of the above relation gives the negative moment for simple Poisson model (1).
Using the identity ( see Rainville [11] page 124)

bR [a;b;z] =b'Fi[a—1;b;2] + 2 YFy [a; b+ 15 2]
fora=A+1,b=A+ l,and z = o, we get

A+1D)'"RA+1A+ 100 =(A4+1) "R [A; A+ 10+ a 'R [A+1; A+ 2;q

(10)

Also,
TF[A+1;A+1;0] = e an
Using (8),(9) and (11) in (10), we get the result. ]

4. CHARACTERIZATION

In this section, the recurrence relation derived in theorem 1 is used for the characterization
of the size-biased Poisson distribution.

Theorem 2. : If X is a random variable taking the positive-integer values and the relation
EX+ A =1_ SE(X + A — 1)7! for A>1 is true, then X is characterized by a
size-biased Poisson distribution.

Proof. Since for A>1, we have

E(X+A)™ = é—gE(X+A—1)_1
;x—i—A =) = ;—S;W;_DPQ(X—@
B ;_;PQ(X_l)_;li(a:+114—1)P2<X—$)
_ é_épg(le) ig(ij)Pg(X z+1)

By simple computation, we get

= 1
X=2)=1-P(X=1)—-A) — P (X=z+1). (12
zl::c—FA ;(x—FA)
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o0
Since Y P, (X = x) = 1, which gives

=1
ZPZ = —1—P2 sz —:L'—{—l),
(12) becomes
3 1) = ii“”” Py(X =x+1)
] BPETEE T
ZaP (X = x)—xPQ( =z+1)
> = 0.
ot (x+ A)

Since aPs (X = x) — 2P (X =2+ 1) is either >= or <0, then in each case, we get

aPy (X =2z)/(z+A) =zP(X=z+1)/(z+ A),
thus

PQ(X:$+1) *PQ(X :L‘)
Putting x = 1,2,3.....0 — 1, we get

o a?
P (X =3)= PQ(X_2)_§P2(X—1)7 ......
Ckxilpg (X = )
Py (X =
2 v (x —1)!
From equation(3) forz =1, P, (X =1) = e~ ™.

Therefore,
P(X =xz)=a"te®/(x—1),
which is the probability function of size-biased Poisson distribution.This completes the proof.
O

5. ESTIMATION METHODS

In this section, we discuss the basic three estimation methods for the parameter of the size-
biased Poisson distribution and verify their efficiencies.

5.1. METHOD OF MOMENTS. In the method of moments, replacing the population mean
/

n
1y = 1+ a by the corresponding sample mean T = %le , we get

a=1—1 (13)
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5.2. METHOD OF MAXIMUM LIKELIHOOD. Let X;, Xs......X,, be a random sample
from the size-biased Poisson distribution, then the corresponding likelihood function is given
as

n

xi—n n
L = e™a= I (-1, o=12. (14)
1=
n n
= e "V /11 (x; — 1)!, where y = le (15)

=1 -
=1

The log likelihood function of (15) can be written as

log L = —na+ (y —n)loga — Zlog((a:i =)
i=1

The corresponding likelihood equation is given as

8logL: +(y—n)
oo «o

On equating the above derivative equal to zero,we get the maximum likelihood estimate as

a=17—1.

This coincides with the moment estimate.

5.3. BAYESIAN METHOD OF ESTIMATION. We assume that before the observations
were made, our knowledge about the parameter o was only a vague one. Consequently, the
non-informative vague prior g(«) proportional to é is applicable to a good approximation.
Thus

1
gla) = —,a>0. (16)
@
The posterior distribution from (15) and (16) is given as

ay—n—l e no
I(a/y) = %
fay—n—l e~y

0

The Bayes estimator of « becomes
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a = 7aH (a/y) dex
0

oo
Ja¥™" e o
0

)
f ay—n—l e—nodq
0

= y—n/n=T-1,

which coincides with mle and moment estimate.

In order to find out the more general estimate of o, we consider the more general prior of
« which is given by the gamma distribution with known hyper-parameters a, b>0 having the
density function as

f (@) = abe @’ 1 /Th;a > 0 (17)
Using (15) and (17), the Bayes estimator of « comes out to be
a=y+b—n/n+a (18)

For a=b=0, the estimator coincides with mle and moment estimate. This shows that the
Baye’s estimate & serves as a general estimate which can be used for fitting purposes to a real
life data.

6. NUMERICAL EXPERIMENTS AND DISCUSSIONS

It is very difficult to compare the theoretical performances of different estimators proposed
in the previous section. Therefore, we perform extensive simulations to compare the perfor-
mances of different methods of estimation mainly with respect to their biases and the mean
squared errors (MSE’s), for different sample sizes and different parametric values. Regarding
the choice of values of (a, b) in Baye’s estimator (&), there was no information about their
values except that they are real and positive numbers. Therefore, 25 combinations of values of
(a,b) were considered for a,b = 1,2, 3, 4,5 and those values of a, b were selected for which
the Baye’s estimator has minimum variance. It was found that for a=b=2, the Baye’s estima-
tor has minimum variance and y? values between the simulated sample frequencies and the
estimated Baye’s frequencies were least.

6.1. AVERAGE RELATIVE ESTIMATES AND AVERAGE RELATIVE MEAN SQUARED
ERRORS OF a. For the sample sizes n = 15, 20, 30, 50, 100 and different values of the pa-
rameter o = 0.5,1.0,2.0,2.5 and for each combination of n and «, we generate a sample of
size n from the size-biased Poisson distribution and estimate « by different methods of esti-

mation. We report the average values of (%)and the corresponding average MSE’s within
brackets.. All the reported results are based on 10, 000 replications. The results are presented
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in table 1. From the table it is clear that the average biases and the average MSE’s decrease
as sample size increases. It indicates that all the methods of estimation provide the asymptoti-
cally unbiased and the consistent estimators. It is also observed that the average biases and the

average MSE’s of (%)depend on « . On comparing the performances of all the methods, it is

clear that as far as the minimum bias is concerned the Baye’s works the best in almost all the
cases.

TABLE 1. AVERAGE RELATIVE ESTIMATES AND AVERAGE RELA-

TIVE MEAN SQUARED ERRORS OF «

n Method | o = 0.5 a=1.0 a=2.0 a=2.5

15 | Baye's | 1.180(0.230) | 1.221(0.435) | 1.331(0.857) | 1.356(0.97)
MLE 1.364(0.678) 1.383(0.871) 1.455(1.624) 1.465(1.4166)

20 | Baye's | 1.132(0.141) | 1.161(1.88) | 1.223(0.343) | 1.244(0.424)
MLE 1.314(0.448) 1.285(0.479) 1.317(0.675) 1.338(0.791)

30 | Baye's | 1.084(0.075) | 1.100(0.100) | 1.129(0146) | 1.145(0.178)
MLE 1.218(0.248) 1.191(0.242) 1.197(0.293) 1.213(0.357)

50 | Baye's | 1.048(0.038) | 1.054(0.045) | 1.077(0.068) | 1.082(0.077)
MLE 1.134(0.131) 1.112(0.117) 1.123(0.145) 1.125(0.157)

100 | Baye's | 1.022(0.016) | 1.027(0.020) | 1.035(0.027) | 1.038(0.030)
MLE 1.065(0.060) 1.056(0.053) 1.058(0.061) 1.061(0.066)

6.2. FITTING OF SIZE-BIASED POISSON DISTRIBUTION MODEL. The two differ-
ent varieties of Mulberry Ichinose and Kokuso-20 having different leaf spot disease intensity
were chosen for the study in a local Kashmir Sericulture division. Three trees of each variety
were selected at random. From each tree, three branches were selected randomly and then from
each branch, the spots were recorded from all the leaves. The leaves with no spot were referred
as disease free and named as grade zero (0 grade). The leaves having 1 to 5, 6 to 10, 11 to
15, 16 to 20 and more than 20 spots were graded as 1,2,3,4 and 5 grades respectively. In our
study, the leaves of zero grades were not found. The data for two varieties of Mulberry Ichi-
nose and Kokuso-20 are listed in tables 2 and 3, respectively. A comparison is made between
different methods of estimation for the parameter of the size-biased Poisson distribution and it
was found that the Baye’s estimator constitutes a better fit against MLE or moment estimator.

ACKNOWLEDGMENTS

The author is highly thankful to the referee and the editor for their constructive suggestions.

REFERENCES

[1] Ayesha Roohi and Munir Ahmad, Estimation of Characterization of the parameter of Hyper- Poisson distri-
bution using negative moments , Pakistan Jounal of Statistics,19(2003), 99-105.

[2] Bates, D.M, Using open source to teach
http://www.stat.wisc.edu/"bates/JSM(2001).pdf.

mathematical statistics.



160

K. A. MIR

TABLE 2
Expected Frequency
Iéizgsp ot Obseved Frquency I\ELE Bayf’s
Qo o
1 18 17.5 17.9
2 15 14.7 14.95
3 10 9.86 9.91
4 14 13.94 13.99
5 13 14 13.25
Total 70 70 70
% 0.094 0.0063
TABLE 3
Expected Frequency
éigg:p o Obseved Frquency MALE Baze’s
a Q
1 37 36.42 36.92
2 16 15.92 15.97
3 15 14.93 14.96
4 8 7.64 7.91
5 8 9.09 8.24
Total 84 84 84
X° 0.142 0.0083

[3] Cohen, A.C, An extension of a truncated Poisson distribution, Biometrics, 16(1960a), 446- 450.
[4] Cohen, A.C, Estimation in a truncated Poisson distribution when zeroes and some ones are missing, Journal

of American Statistical Association 55(1960b),342- 348.
[5] David, EN and Johnson, N.L, The truncated Poisson, Biometrics, 8(1952), 275- 285.
[6] Johson, N.L and kotz, S, Discrete distribution in Statistics, John Wiley,(1969).

[7] Johson, N.L and kotz, S and Kemp, A.W, Univariate discrete distributions, John Wiley and Sons(1992).
[8] Munir Ahmad and Ayesha Roohi , Characterization of the Poisson Probability distribution, Pakistan Journal

of Statistics Vol. 20(2)(2004), 301-304.

[9] Murakami, M, Censored sample from truncated Poisson distribution, J.g the College of arts and sciences,

Chiba Urmssily, 3(1964),263-268.
[10] Plackett, R.L, The truncated Poisson distributions Biometrics, 9(1953), 185-188.
[11] Rainville, E.D, Special functions. Chelsa publishing company,Bronnx N(1960).

[12] Tate, R.F. and Goen, R.L, MVUE for the truncated Poisson distribution, Annals of Mathematical Statistics, 29

(1958),755- 765.




