• 제목/요약/키워드: maximum moment

검색결과 906건 처리시간 0.027초

운동화의 생체역학적 평가시 하지 회내운동의 운동학적 평가변인에 대한 상해 기준치 연구 (The Study on critical Value of Kinematical Evaluation Variables of Lower Extremity Pronation in Biomechanical Evaluation of Running Shoes)

  • 곽창수;전민주;권오복
    • 한국운동역학회지
    • /
    • 제16권4호
    • /
    • pp.175-187
    • /
    • 2006
  • The purpose of this study was to find the relationship between Achilles tendon angle, angular velocity from 2D cinematography utilized to easily analyze the functions of shoes, ankle joint moment, knee joint moment, and hip joint moment from 3D cinematography utilized to predict the injury. Also, this study was to provide the optimal standard to analyze the injury related to the shoes. Subjects in this study were 30 university male students and 18 conditions (2 types of running speed, 3 of midsole hardness, 3 of midsole height) were measured using cinematography and force platform. The results were as following. 1) Hip joint abduction moment was effected by many variables such as running speed, midsole height, maximum achilles tendon angle, ground reaction force. 2) Knee joint rotational moment in running was approximately 1/10 - 1/4 times of the injury critical value and eversion moment was approximately 1/4 - 1/2 times of the injury critical value. 3) Ankle joint pronation moment in running was 1/3 - 1/2 times of the injury critical value. 4) Knee joint rotational moment was found to be irrelevant with maximum achilles tendon angle or angular velocity. 5) Pronation from running was thought to be relevant to rather eversion moment activity than rotational moment activity of knee joint. 6) Plantar flexion abductor of ankle showed significant relationship with the ground reaction force variable. 7) When the loading rate for ground reaction force in passive region increased, extensor tended to be exposed to the injury. Main variables in biomechanical analysis of shoes were impact absorption and pronation. Among these variables, pronation factor was reported to be relevant with knee injury from long duration exercise. Achilles tendon angle factor was utilized frequently to evaluate this. However, as the results of this study showed, the relationship between these variables and injury relating variable of knee moment was so important. Studies without consideration on this finding should be reconsidered and reconfirmed.

Evaluation of The Moment Resistance Joint Strength of Larch Glulam Using Glass Fiber Reinforced Wood Plate

  • Song, Yo-Jin;Jung, Hong-Ju;Park, Hyun-Ho;Lee, Hak-Young;Hong, Soon-Il
    • Journal of the Korean Wood Science and Technology
    • /
    • 제42권5호
    • /
    • pp.571-578
    • /
    • 2014
  • As a way of developing wooden joint development, a glass fiber reinforced wood plate was manufactured to replace a steel plate. Also, the fracture toughness was evaluated. Through application to a cantilever-type specimen made of a column and a beam, the moment resistance performance was evaluated. For the fracture toughness specimen of the wood plate, 12 types were manufactured by varying the combination of a main member (veneer and plywood) and reinforcement (glass fiber sheet and glass fiber cloth). The results of the fracture toughness test indicated that the 5% yield load of the specimen using plywood was 18% higher than that of the specimen using veneer, and that the specimen reinforced by inserting glass fiber sheets between testing materials (Type-3-PS) had the highest average 5% yield load 4841 N. Thus, a moment resistance strength test was performed by applying Type-3-PS to a column-beam joint. The results of the test indicated that compared to the specimen using a steel plate and a drift pin (Type-A), the maximum moment ratio of the specimen using a glass fiber reinforced wood plate (Type-3-PS) and a drift pin (Type-B) was 0.79; and that a rupture occurred in the wood plate due to high stiffness of the drift pin. The maximum moment ratio of the specimen using a glass fiber reinforced wood plate (Type-3-PS) and a glass fiber reinforced wooden laminated pin (Type-C) was 0.67, which showed low performance. However, unlike Type-A, a ductile fracture occurred on Type-C, and the load gradually decreased even after the maximum moment.

L-모멘트법에 의한 극치강우의 빈도분석 (Frequency Analysis of Extreme Rainfall by L-Moments)

  • 맹승진;이순혁;김병준
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2002년도 학술발표회 발표논문집
    • /
    • pp.225-228
    • /
    • 2002
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall in 38 Korean rainfall stations. To select the fit appropriate distribution of annual maximum daily rainfall data according to rainfall stations, applied were Generalized Extreme Value (GEV), Generalized Logistic (GLO) and Generalized Pareto (GPA) probability distributions were applied. and their aptness was judged Dusing an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test, the aptitude was judged of applied distributions such as GEV, GLO and GPA. The GEV and GLO distributions were selected as the appropriate distributions. Their parameters were estimated Targetingfrom the observed and simulated annual maximum daily rainfalls and using Monte Carlo techniques, the parameters of GEV and GLO selected as suitable distributions were estimated and. dDesign rainfallss were then derived, using the L-moment. Appropriate design rainfalls were suggested by doing a comparative analysis of design rainfall from the GEV and GLO distributions according to rainfall stations.

  • PDF

DSP를 이용한 2차원 평면에서 chip의 위치와 자세보정에 관한 연구 (A study on the correction of a position and orientation of the chip using DSP in the 2nd plane)

  • 유창목;차영엽
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1316-1319
    • /
    • 1996
  • This paper proposes the algorithm for the correction of a position and orientation of small object such as chip in the precise construction process. In the past, it is general to correct position and orientation of object using human sight and simple vision sensors. But recently, researches using image processing devices have been studied to improve the corrective precision of a position and orientation of object. In this piper, maximum-axis moment and p-theta algorithm are used to correct the position and orientation. Algorithm of maximum-axis moment is widely applied to hetero-object except being applied to a perfect rectangle. This is reason that moments of the X and Y-axis are equal. Therefore, being the shape of a perfect rectangle, the object is applied to other algorithm. In the light of time problem, real-time control is as important as correction of object. To solve it, we use the DSP(Digital Signal Processing) which is far more fast than PC.

  • PDF

New generalized inverse Weibull distribution for lifetime modeling

  • Khan, Muhammad Shuaib;King, Robert
    • Communications for Statistical Applications and Methods
    • /
    • 제23권2호
    • /
    • pp.147-161
    • /
    • 2016
  • This paper introduces the four parameter new generalized inverse Weibull distribution and investigates the potential usefulness of this model with application to reliability data from engineering studies. The new extended model has upside-down hazard rate function and provides an alternative to existing lifetime distributions. Various structural properties of the new distribution are derived that include explicit expressions for the moments, moment generating function, quantile function and the moments of order statistics. The estimation of model parameters are performed by the method of maximum likelihood and evaluate the performance of maximum likelihood estimation using simulation.

3변수 확률분포에 의한 설계강우량 추정 (Estimation of Design Rainfall Using 3 Parameter Probability Distributions)

  • 이순혁;맹승진;류경식
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.595-598
    • /
    • 2004
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.

  • PDF

Performance functions for laterally loaded single concrete piles in homogeneous clays

  • Imancli, Gokhan;Kahyaoglu, M. Rifat;Ozden, Gurkan;Kayalar, Arif S.
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.529-537
    • /
    • 2009
  • A key parameter in the design of a laterally loaded pile is the determination of its performance level. Performance level of a pile is usually expressed as the maximum head deflection and bending moment. In general, uncertainties in the performance of a pile originates from many factors such as inherent variability of soil properties, inadequate soil exploration programs, errors taking place in the determination of soil parameters, limited calculation models as well as uncertainties in loads. This makes it difficult for practicing engineers to decide for the reliability of laterally loaded piles both in cohesive and cohesionless soils. In this paper, limit state functions and consequent performance functions are obtained for single concrete piles to predict the maximum bending moment, a widely accepted design criterion along with the permissible pile head displacement. Analyses were made utilizing three dimensional finite element method and soil-structure-interaction (SSI) effects were accounted for.

Seismic performance of mid-rise steel frames with semi-rigid connections having different moment capacity

  • Bayat, Mohammad;Zahrai, Seyed Mehdi
    • Steel and Composite Structures
    • /
    • 제25권1호
    • /
    • pp.1-17
    • /
    • 2017
  • Seismic performance of hybrid steel frames defined as mixture of rigid and semi-rigid connections is investigated in this paper. Three frames with 10, 15 and 20 stories are designed with fully rigid connections and then with 4 patterns for semi-rigid connection placement, some of beam to column rigid connections would turn to semi-rigid. Each semi-rigid connection is considered with 4 different moment capacities and all rigid and semi-rigid frames consisting of 51 models are subjected to 5 selected earthquake records for nonlinear analysis. Maximum story drifts, roof acceleration and base shear are extracted for those 5 earthquake records and average values are obtained for each case. Based on numerical results for the proposed hybrid frames, story drifts remain in allowable range and the reductions in the maximum roof acceleration of 22, 29 and 25% and maximum base shear of 33, 31 and 54% occur in those 10, 15 and 20-story frames, respectively.

3변수 확률분포형에 의한 극치강우의 빈도분석 (Frequency Analysis of Extreme Rainfall Using 3 Parameter Probability Distributions)

  • 김병준;맹승진;류경식;이순혁
    • 한국농공학회논문집
    • /
    • 제46권3호
    • /
    • pp.31-42
    • /
    • 2004
  • This research seeks to derive the design rainfalls through the L-moment with the test of homogeneity, independence and outlier of data on annual maximum daily rainfall at 38 rainfall stations in Korea. To select the appropriate distribution of annual maximum daily rainfall data by the rainfall stations, Generalized Extreme Value (GEV), Generalized Logistic (GLO), Generalized Pareto (GPA), Generalized Normal (GNO) and Pearson Type 3 (PT3) probability distributions were applied and their aptness were judged using an L-moment ratio diagram and the Kolmogorov-Smirnov (K-S) test. Parameters of appropriate distributions were estimated from the observed and simulated annual maximum daily rainfall using Monte Carlo techniques. Design rainfalls were finally derived by GEV distribution, which was proved to be more appropriate than the other distributions.

Comparison of Parameter Estimation Methods in A Kappa Distribution

  • Park Jeong-Soo;Hwang Young-A
    • Communications for Statistical Applications and Methods
    • /
    • 제12권2호
    • /
    • pp.285-294
    • /
    • 2005
  • This paper deals with the comparison of parameter estimation methods in a 3-parameter Kappa distribution which is sometimes used in flood frequency analysis. Method of moment estimation(MME), L-moment estimation(L-ME), and maximum likelihood estimation(MLE) are applied to estimate three parameters. The performance of these methods are compared by Monte-carlo simulations. Especially for computing MME and L-ME, three dimensional nonlinear equations are simplified to one dimensional equation which is calculated by the Newton-Raphson iteration under constraint. Based on the criterion of the mean squared error, L-ME (or MME) is recommended to use for small sample size( n$\le$100) while MLE is good for large sample size.