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Abstract
This paper introduces the four parameter new generalized inverse Weibull distribution and investigates the

potential usefulness of this model with application to reliability data from engineering studies. The new extended
model has upside-down hazard rate function and provides an alternative to existing lifetime distributions. Various
structural properties of the new distribution are derived that include explicit expressions for the moments, moment
generating function, quantile function and the moments of order statistics. The estimation of model parameters
are performed by the method of maximum likelihood and evaluate the performance of maximum likelihood
estimation using simulation.

Keywords: reliability functions, moment estimation, moment generating function, order statistics,
maximum likelihood estimation

1. Introduction

Hundreds of lifetime distributions are developed in statistics literature and commonly used to describe
real world phenomena. Due to the effectiveness of this theory, many new families of lifetime distri-
butions are developed in statistics literature. A common feature of these new class of distributions is
that they have more parameters and the model adequacy of the new generalized distribution performs
better than the baseline distribution. However there are still many real world scenarios where the
classical model does not adequately fit the real data; therefore, many new lifetime distributions are
required to describe the real world phenomena. The inverse Weibull distribution is the lifetime proba-
bility distribution which is used in the reliability engineering, bio-engineering and many other areas of
biological disciplines. Keller et al. (1982) introduced the inverse Weibull distribution for modelling
reliability data and failures of mechanical components subject to degradation. de Gusmão et al. (2011)
addressed the inverse Weibull model as the limiting distribution of the largest order statistics that is
also known as reciprocal Weibull distribution. In recent statistical literature modified inverse Weibull
distribution have been proposed by Khan and King (2012) to present a comprehensive description of
mathematical properties along with reliability behavior. The cumulative distribution function (cdf) of
the modified inverse Weibull distribution is given by

G(x) = exp
{
−α

x
− θ

(
1
x

)η}
, x > 0, (1.1)

1 Corresponding author: School of Mathematical and Physical Sciences, The University of Newcastle, Callaghan, NSW
2308, Australia. E-mail: Shuaib.stat@gmail.com

Published 31 March 2016 / journal homepage: http://csam.or.kr
c⃝ 2016 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



148 Muhammad Shuaib Khan, Robert King

where η > 0 is the shape parameters and α, θ > 0 are the scale parameters. The probability density
function (pdf) corresponding to (1.1) is given by

g(x) =

α + ηθ (1
x

)η−1 (1
x

)2

exp
{
−α

x
− θ

(
1
x

)η}
, x > 0. (1.2)

Modified extensions of the Weibull and exponential distributions have recently been proposed in
literature on statistical theory to obtain better estimates. Generalized exponential distribution was
introduced by Gupta and Kundu (1999) as a generalization of the standard exponential distribution.
Nadarajah and Kotz (2003) proposed an exponentiated Frechet distribution to generalize the standard
Frechet distribution and studied some of its mathematical properties. Khan et al. (2008) studied
the flexibility of the inverse Weibull distribution. de Gusmão et al. (2011) proposed the generalized
inverse Weibull distribution and discussed several properties of this model with applications. Khan
and King (2014) proposed the new class of transmuted inverse Weibull distribution with application
to reliability data. Khan et al. (2014) studied characterizations of the transmuted Inverse Weibull
distribution with an application to bladder cancer remission times data. Jiang et al. (1999) presented
Weibull and Weibull inverse mixture models. Jiang et al. (2001) discussed the models involving two
inverse Weibull distributions. Sultan et al. (2007) discussed the mixture of two inverse Weibull dis-
tributions. In recent literature modified extensions of the Weibull distributions for modelling bathtub
instantaneous failure rates have been proposed by many authors. Such as, Cordeiro et al. (2013)
introduced the beta exponentiated Weibull distribution and studied various statistical properties along
with applications. The beta modified Weibull distribution studied by Silva et al. (2010) included 17
distributions as special cases and studied various structural properties with applications. Hemmati et
al. (2011) proposed the three parameter Weibull-Poisson distribution as an aging class distribution.
We are motivated to introduce the new generalized inverse Weibull distribution because of the above
generalizations in the exponentiated family of lifetime distributions. This research introduces a new
four parameter distribution, which contains nine lifetime distributions as special sub-models. This
paper deliberates the comprehensive description of mathematical properties of the new model and
presents a graphical analysis of some of its properties.

The article is organized as follows. In Section 2, we present the special sub-models to illustrate
the analytical shapes of the probability density and hazard functions of the new generalized inverse
Weibull (NGIW) distribution. In Section 3, we derived the quantile function, moment estimation
and moment generating function. In Section 4, we address the order statistics and the moments of
order statistics. Maximum likelihood estimations (MLEs) of the unknown parameters with asymptotic
confidence intervals of the parameters are discussed in Section 5. In Section 6, we evaluate the
performance of a maximum likelihood method by using Monte Carlo simulation. In Section 7, we
illustrate the usefulness of the new extended model. Concluding remarks are addressed in Section 8.

2. New generalized inverse Weibull distribution

A non-negative random variable X is said to have NGIW distribution with four parameters α, η, θ, β >
0 and x > 0, its cdf and pdf are given by

F(x) = 1 −
[
1 − exp

{
−α

x
− θ

(
1
x

)η}]β
, x > 0, (2.1)
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Table 1: Sub-models of the new generalized inverse Weibull distribution

Distribution α η θ β

Modified inverse Weibull - - - 1
Modified inverse Rayleigh - 2 - 1
Modified inverse exponential - 1 - 1
Generalized inverse Weibull 0 - - -
Generalized inverse Rayleigh 0 2 - -
Generalized inverse exponential 0 1 - -
Inverse Weibull 0 - - 1
Inverse Rayleigh 0 2 - 1
Inverse exponential 0 1 - 1

and

f (x) = β

α + ηθ (1
x

)η−1 (1
x

)2

exp
{
−α

x
− θ

(
1
x

)η} [
1 − exp

{
−α

x
− θ

(
1
x

)η}]β−1

(2.2)

respectively, where η > 0 and β > 0 are the shape parameters and α > 0 and θ > 0 are the scale
parameters of the subject distribution. The survival function, hazard function and cumulative hazard
function of the NGIW distribution are given by

R(x) =
[
1 − exp

{
−α

x
− θ

(
1
x

)η}]β
, (2.3)

h(x) =
β
(
α + ηθ

(
1
x

)η−1
) (

1
x

)2
exp

{
−αx − θ

(
1
x

)η}
1 − exp

{
−αx − θ

(
1
x

)η} , (2.4)

H(x) = − ln
[
1 − exp

{
−α

x
− θ

(
1
x

)η}]β
. (2.5)

Let X be a random variable with density function (2.2), we write X ∼ NGIW(x;α, θ, η, β). Figure
1 shows the diverse shape of the NGIW pdf with different choice of parameters that include some
well-known distributions. When η, β ≥ 1 the NGIW distribution becomes unimodal. As the random
variable x→ ∞ the density of the NGIW distribution tends to zero. Figure 1 illustrates some possible
shapes of the instantaneous failure rate function for some selected choices of parameters for the NGIW
model. A characteristic of the NGIW distribution shows that the distribution has upside-down bathtub
shape hazard rate function for all choice of parameters. It is notable that the parameter β increases as
the behavior of the instantaneous failure rate strictly increases then gradually decreases. The NGIW
distribution contains several well-known distributions as special cases when its parameters change.
Table 1 demonstrates the sub-models of the NGIW distribution.

3. Moments and quantiles

This section is devoted for studying statistical properties of NGIW distribution such as moments,
moment generating function and quantile analysis.

Theorem 1. If X has the NGIW(x;α, θ, η, β), then the kth moment of X, µk is given as follows

µ́k =

∞∑
i, j=0

(
β − 1

j

)
αβhi, j,θΓ (iη − k + 1)

α
iη−k+1
j

+

∞∑
i, j=0

(
β − 1

j

)
ηβθhi, j,θΓ (η(i + 1) − k)

α
η(i+1)−k
j

,
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Figure 1: Plots of the NGIW pdf and hf for some parameter values (NGIW = new generalized inverse Weibull,
pdf = probability density function, hf = hazard function).

where

hi, j,θ =
( j + 1)i θi (−1)i+ j

i!
and α j = α ( j + 1) .

Proof: The kth moment of the NGIW distribution as follows

µ́k =

∫ ∞

0
xkβ

α + ηθ (1
x

)η−1 (1
x

)2

exp
{
−α

x
− θ

(
1
x

)η} [
1 − exp

{
−α

x
− θ

(
1
x

)η}]β−1

dx

using the series expansion, the above equation reduces to

µ́k =

∞∑
j=0

(
β − 1

j

)
(−1) j β

∫ ∞

0
xk−2

α + ηθ (1
x

)η−1 exp
{
−( j + 1)

(
α

x
+ θ

(
1
x

)η)}
dx,
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using the following expansions exp{−( j + 1)θ(1/x)η} given by

exp
{
−( j + 1)θ

(
1
x

)η}
=

∞∑
i=0

( j + 1)i θi (−1)i

i!

(
1
x

)iη

using hi, j,θ and α j, as defined above

µ́k =

∞∑
i, j=0

(
β − 1

j

)
hi, j,θαβ

∫ ∞

0
xk−iη−2 exp

(
−
α j

x

)
dx +

∞∑
i, j=0

(
β − 1

j

)
hi, j,θβηθ

∫ ∞

0
xk−η(i+1)−1 exp

(
−
α j

x

)
dx.

Finally, we obtain

µ́k =

∞∑
i, j=0

(
β − 1

j

)
αβhi, j,θΓ (iη − k + 1)

α
iη−k+1
j

+

∞∑
i, j=0

(
β − 1

j

)
ηβθhi, j,θΓ (η(i + 1) − k)

α
η(i+1)−k
j

. (3.1)

�

Theorem 2. If X has the NGIW(x;α, θ, η, β), then the moment generating function of X, is given as
follows

Mx(t) =
∞∑

i, j=0

∞∑
m=0

(
β − 1

j

)
αβhi, j,θtmΓ (iη − m + 1)

m!αiη−m+1
j

+

∞∑
i, j=0

∞∑
m=0

(
β − 1

j

)
ηβθhi, j,θtmΓ (η(i + 1) − m)

m!αη(i+1)−m
j

,

where

hi, j,θ =
( j + 1)i θi (−1)i+ j

i!
and α j = α ( j + 1) .

Proof: We have the moment generating function of the NGIW distribution as follows

Mx(t) =
∫ ∞

0

β

x2

α + ηθ (1
x

)η−1 exp
{

tx − α
x
− θ

(
1
x

)η} [
1 − exp

{
−α

x
− θ

(
1
x

)η}]β−1

dx.

For mathematical tractability, using the series expansion, we obtain

Mx(t) =
∞∑
j=0

(
β − 1

j

)
(−1) j

∫ ∞

0

β

x2

α + ηθ (1
x

)η−1 exp
{

tx − ( j + 1)
(
α

x
+ θ

(
1
x

)η)}
dx,

the above integral reduces to

Mx(t) =
∞∑

i, j=0

(
β − 1

j

)
hi, j,θαβ

∞∑
m=0

tm

m!

∫ ∞

0
xm−iη−2 exp

(
−
α j

x

)
dx

+

∞∑
i, j=0

(
β − 1

j

)
hi, j,θβηθ

∞∑
m=0

tm

m!

∫ ∞

0
xm−η(i+1)−1 exp

(
−
α j

x

)
dx.
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Figure 2: Median and coefficient of quantile deviation of the new generalized inverse Weibull distribution.

Finally, we obtain

Mx(t) =
∞∑

i, j=0

∞∑
m=0

(
β − 1

j

)
αβhi, j,θtmΓ (iη − m +1)

m!αiη−m+1
j

+

∞∑
i, j=0

∞∑
m=0

(
β − 1

j

)
ηβθhi, j,θtmΓ (η(i + 1) −m)

m!αη(i+1)−m
j

. (3.2)

�

The quantile xq of the NGIW distribution is the real solution of the following equation

θ

(
1
xq

)θ
+
α

xq
+ ln

{
1 − (1 − u)

1
β

}
= 0. (3.3)

By substituting u = 0.5 in equation (3.3), we obtain the median of the NGIW distribution.
Figure 2 shows the median of the NGIW distribution as a function of β for values of the parameters

α = 3, η = 2 and θ = 2. Figure 2 also shows the coefficient of quartile deviation to illustrate the effect
of η as a function of β for values of the parameters α = 3, η = 2 and θ = 2. To illustrate the effect
of shape parameter η as a function of β on skewness and kurtosis we consider the measure based on
quantiles. Graphical representation of the Bowley skewness and percentile kurtosis when α = 3, η = 2
and θ = 2, as a function of β are illustrated in Figure 3, respectively.

4. Order statistics

Let X1, X2, . . . , Xn are independently identically distributed ordered random variables from the NGIW
(x; α, θ, η, β) distribution having the probability density function is given by

fr:n(x) =
(F(x))r−1 (1 − F(x))n−r f (x)

B(r, n − r + 1)
, x > 0. (4.1)
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Figure 3: Bowley skewness and percentile kurtosis of the new generalized inverse Weibull distribution.

By substituting (2.1) and (2.2) in (4.1), we obtain

fr:n(x) = n
(

n − 1
r − 1

) n−r∑
p=0

(
n − r

p

)
(−1)p

1 − ∞∑
j=0

(
β − 1

j

)
β exp

{
− ( j + 1)

(
α

x
+ θ

(
1
x

)η)}r+p−1

×
∞∑
j=0

(
β − 1

j

)
β

α + ηθ (1
x

)η−1 (1
x

)2

exp
{
− ( j + 1)

(
α

x
+ θ

(
1
x

)η)}
, (4.2)

using the following expansions exp {−( j + 1)θ(1/x)η} given by

exp
{
−( j + 1)θ

(
1
x

)η}
=

∞∑
q=0

( j + 1)q θq (−1)q

q!

(
1
x

)qη

.

Setting Cq, j = ( j + 1)q θq (−1)q /q! and α j = α ( j + 1), we obtain

fr:n(x) = n
(

n − 1
r − 1

) n−r∑
p=0

∞∑
m, j=0

λp,m, j


∞∑

q=0

αCq, j

xηq+2 exp
(
−
α j

x

)
+

∞∑
q=0

ηθCq, j

xη(q+1)+1 exp
(
−
α j

x

) , (4.3)

where

λp,m, j =

(
n − r

p

) (
r + p − 1

m

) (
β(m + 1) − 1

j

)
(−1)p+m+ j.

Using equation (4.3), we can obtain the statistical regular properties of the NGIW order statistics.
Such as moments, mgf, mean deviation among others. Using (4.3), the kth moment of the rth order
statistics X(r) is given by

µn:r
k = n

(
n − 1
r − 1

) n−r∑
p=0

∞∑
m, j=0

λp,m, j


∞∑

q=0

αCq, jΓ (ηq − k + 1)

α
ηq−k+1
j

+

∞∑
q=0

ηθCq, jΓ (η(q + 1) − k)
α
η(q+1)−k
j

 . (4.4)
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5. Maximum likelihood estimation

Consider the random samples x1, x2, . . . , xn consisting of n observations from the NGIW distribution
and φ = (α, η, θ, β)T be the parameter vector. The log-likelihood function of (2.2) is given by

log L = n log β +
n∑

i=1

log

α + ηθ ( 1
xi

)η−1 + n∑
i=1

log
(

1
xi

)2

−
n∑

i=1

(
α

xi

)
− θ

n∑
i=1

(
1
xi

)η
+ (β − 1)

n∑
i=1

log
{

1 − exp
{
− α

xi
− θ

(
1
xi

)η}}
, (5.1)

respectively. By taking the partial derivatives of the log-likelihood function with respect to α, η, θ and
β, we obtain the components of the score vector U(φ) then equating it to zero, we obtain the estimating
equations

∂ log L
∂α

=

n∑
i=1

α + ηθ
(

1
xi

)η−1

−1

−
n∑

i=1

(
1
xi

)
+ (β − 1)

n∑
i=1

exp
{
− α

xi
− θ

(
1
xi

)η} ( 1
xi

)
{
1 − exp

{
− α

xi
− θ

(
1
xi

)η}} ,
∂ log L
∂η

=

n∑
i=1

θ
(

1
xi

)η−1{
η log

(
1
xi

)
+1

}{
α + ηθ

(
1
xi

)η−1
} − θ

n∑
i=1

(
1
xi

)η
log

(
1
xi

)
+ (β−1)

n∑
i=1

exp
{
− α

xi
− θ

(
1
xi

)η}
θ
(

1
xi

)η
log

(
1
xi

)
{
1 − exp

{
− α

xi
− θ

(
1
xi

)η}} ,

∂ log L
∂θ

=

n∑
i=1

η
(

1
xi

)η−1{
α + ηθ

(
1
xi

)η−1
} − n∑

i=1

(
1
xi

)η
+ (β − 1)

n∑
i=1

exp
{
− α

xi
− θ

(
1
xi

)η} ( 1
xi

)η{
1 − exp

{
− α

xi
− θ

(
1
xi

)η}} ,
and

∂ log L
∂β

=
n
β
+

n∑
i=1

log
{

1 − exp
{
− α

xi
− θ

(
1
xi

)η}}
.

The MLEs can be determined numerically from the solution of nonlinear system of equations; sub-
sequently, these solutions will yield the ML estimators α̂, η̂, θ̂ and β̂. We required the observed
information matrix for the interval estimation and hypothesis testing. For the four parameters NGIW
distribution pdf all the second order derivatives exist. Thus we have the observed information matrix
as

V−1 = −E



∂2 log L
∂α2

∂2 log L
∂α∂η

∂2 log L
∂α∂θ

∂2 log L
∂α∂β

∂2 log L
∂α∂η

∂2 log L
∂η2

∂2 log L
∂η∂θ

∂2 log L
∂η∂β

∂2 log L
∂α∂θ

∂2 log L
∂η∂θ

∂2 log L
∂θ2

∂2 log L
∂θ∂β

∂2 log L
∂α∂β

∂2 log L
∂η∂β

∂2 log L
∂θ∂β

∂2 log L
∂β2


(5.2)

respectively. Equation (5.2) is the expected information matrix of the NGIW distribution. Solving the
observed information matrix will provide solutions for asymptotic variance and co-variances of these
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Table 2: Mean, standard error (S.E), bias and MSE of the NGIW distribution

n Parameter Mean S.E Bias MSE
α 0.1360 0.3237 −0.8640 0.8512

100 η 1.9230 0.3064 −0.0770 0.0998
θ 2.5948 0.4780 0.5948 0.5822
β 0.3706 0.1183 −0.1294 0.0307
α 1.4680 0.4008 0.4680 0.3796

200 η 3.1461 0.7602 1.1461 1.8914
θ 1.5525 0.4483 −0.4475 0.4012
β 0.5352 0.0617 0.0352 0.0050
α 1.4213 0.5240 0.4213 0.4520

300 η 2.6869 0.7230 0.6869 0.9945
θ 1.8573 0.4822 −0.1427 0.2528
β 0.5705 0.0710 0.0705 0.0100
α 0.7295 0.5741 −0.2705 0.4027

400 η 2.2364 0.3782 0.2364 0.1989
θ 2.7360 0.4451 0.7360 0.7398
β 0.4399 0.0702 −0.0601 0.0085
α 0.3957 0.3176 −0.6043 0.4660

500 η 2.0257 0.1673 0.0257 0.0286
θ 2.1367 0.2539 0.1367 0.0831
β 0.4165 0.0572 −0.0835 0.0102

MSE = mean square error, NGIW = new generalized inverse Weibull.

ML estimators for α̂, η̂, θ̂, and β̂. By using (5.2) the confidence intervals for the parameters α, η, θ and
β are approximately 100(1 − γ)% can be determined as

α̂ ± Z γ
2

√
V̂11, η̂ ± Z γ

2

√
V̂22, θ̂ ± Z γ

2

√
V̂33, β̂ ± Z γ

2

√
V̂44,

where Zγ/2 is the upper γth percentile of the standard normal distribution.

6. Simulation

In this section we evaluate the performance of the MLEs for the NGIW distribution. We consider
simulation values of a random variable X using the quantile function in equation (3.3). Let U denote
the uniform random variable over the interval (0, 1). We perform a simulation study in order to
evaluate the mean estimates, standard error (S.E), bias and mean square error (MSE). We generate
random samples of size n = 100, 200, 300, 400, 500 using a Monte Carlo simulation. For this study
we consider the fixed choice of parameter values α = 1, η = 2, θ = 2, β = 0.5.

The simulation process is repeated for 1,000 times using the BFGS optimization method in R and
the parameter estimates obtained by optimum routine (Table 2). Results from Table 2 shows that the
bias and MSE does not provide satisfactory estimates for small sample sizes. These simulated results
suggest that as the sample size n increases the method of MLEs does provide better estimates. Figure
4, illustrates the exact densities and histogram of the NGIW distribution from two simulated data sets
for some selected values of parameters.

7. Application

In this section we provide a data analysis in order to assess the goodness-of-fit of a model with failure
times for the air conditioning system of an aircraft from a random sample of 30 observations to see
how the new model works in practice. The data have been obtained from (Linhart and Zucchini, 1986,
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Figure 4: Plots of the new generalized inverse Weibull distribution for simulated data sets.

p.69). The data represents the failure times of the air conditioning system of an aircraft: 23, 261, 87,
7, 120, 14, 62, 47,225, 71, 246, 21, 42, 20, 5, 12, 120, 11, 3, 14, 71, 11, 14, 11, 16, 90, 1, 16, 52,
95. We compare the goodness of fit with several other lifetime distributions to demonstrate that the
NGIW distribution can be a superior lifetime distribution

1. New generalized inverse Rayleigh (NGIR) distribution with the pdf

f (x) = β
(
α

x2 +
2θ
x3

)
exp

−αx − θ
(

1
x

)2

1 − exp

−αx − θ
(

1
x

)2

β−1

, x > 0,

where α, θ > 0 are the scale parameters and β > 0 is the shape parameter of the NGIR distribution.

2. Modified inverse Weibull (MIW) distribution with the pdf

f (x) =

α + ηθ (1
x

)η−1 (1
x

)2

exp
{
−α

x
− θ

(
1
x

)η}
, x > 0,

where α, θ > 0 are the scale parameters and η > 0 is the shape parameter of the MIW distribution.

3. Modified inverse Rayleigh (MIR) distribution with the pdf

f (x) = β
(
α

x2 +
2θ
x3

)
exp

−αx − θ
(

1
x

)2
 , x > 0,

where α, θ > 0 are the scale parameters of the MIR distribution.

4. Inverse Weibull (IW) distribution with the pdf

f (x) = ηθ
(

1
x

)η+1

exp
{
−θ

(
1
x

)η}
, x > 0,
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Table 3: MLEs of the parameters for the air conditioning system data, the corresponding SEs (given in
parentheses) and AIC, BIC, CAIC measures

Model α η θ β AIC BIC CAIC

NGIW 0.9514 0.1138 10.7856 1042.46 310.490 316.090 312.090(2.1354) (0.1028) (5.2884) (6296.18)

NGIR 8.1239 - 0.0001 0.6493 320.380 324.590 321.310(2.8177) (4.5222) (0.1615)

MIW 11.1798 2.0056 1.1E-9 - 324.120 328.320 325.050(2.0412) (0.0001) (0.0014)

MIR 11.1799 - 1.2E−6 - 322.124 322.568 324.926(2.2739) (5.6022)

IW - 0.7239 6.9712 - 314.229 317.031 314.673(0.0927) (1.8038)

IR - - 24.279 - 433.491 434.892 433.634(4.4327)

NGIW = new generalized inverse Weibull, NGIR = new generalized inverse Rayleigh, MIW = modified inverse Weibull,
MIR = modified inverse Rayleigh, IW = inverse Weibull, IR = inverse Rayleigh.

Table 4: The Log-likelihood, the values of likelihood ratio test (LRT) and p-values

Model H0 −L( · ; x) Λ d.f p-value
NGIR η = 2 157.193 11.8914 1 0.0006
MIW β = 1 159.060 15.6254 1 7.7E−5
MIR η = 2, β = 1 159.062 15.6294 2 7.7E−5
IW α = 0, β = 1 155.114 7.7334 2 0.0054
IR α = 0, η = 2, β = 1 215.746 128.9900 3 6.8E−30

NGIR = new generalized inverse Rayleigh, MIW = modified inverse Weibull, MIR = modified inverse Rayleigh,
IW = inverse Weibull, IR = inverse Rayleigh.

where θ > 0 is the scale parameter and η > 0 is the shape parameter of the IW distribution.

5. Inverse Rayleigh (IR) distribution with the pdf

f (x) = 2θ
(

1
x

)3

exp

−θ
(

1
x

)2
 , x > 0,

where θ > 0 is the scale parameter of the IR distribution.

We fitted the NGIW, NGIR, MIW, MIR, IW and IR distributions to the failure times for the 30
components of data from the air conditioning system of an aircraft data by the method of maximum
likelihood. The MLEs of the parameters with their corresponding standard errors are given in paren-
thesis and Table 3 provides the Akaike information criteria (AIC), Bayesian information criteria (BIC)
and the corrected Akaike information criteria (CAIC) for the fitted models. The AIC, BIC, CAIC in-
dicate that the proposed distribution provides a better fit for this data. Table 4 shows a comparison
of the NGIW distribution with five of its sub-models using likelihood ratio (LR) statistics. The LR
statistics for testing of hypothesis with their corresponding p-values indicate that the proposed model
is the most adequate model. Hence we reject the null hypothesis in favor of the NGIW distribution in
all cases because the p-values are small. The AIC, BIC, CAIC and the LRT results indicate that the
NGIW distribution is a capable model for fitting lifetime data. The required numerical evaluation was
performed using the R program (http://www.r-project.org/).

Figure 5 illustrates the fitted NGIW, MIW and IW density, distribution, reliability and hazard
functions for the failure times of the air conditioning system data. Figure 5 shows that the proposed
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Figure 5: Plots of the estimated densities and cdfs for the failure times of air conditioning system data (NGIW
= new generalized inverse Weibull, MIW = modified inverse Weibull, IW = inverse Weibull, cdf = cumulative

distribution function).

Table 5: Goodness-of-fit statistics for the air conditioning data

Distribution K-S test W∗ A∗ p-value
NGIW 0.1239 0.0744 0.4134 0.7466
NGIR 0.2108 0.1497 1.0708 0.1388
MIW 0.2329 0.1435 1.0309 0.0770
MIR 0.2330 0.1437 1.0340 0.0771
IW 0.1594 0.1028 0.7514 0.4309
IR 0.6849 0.3128 2.0274 1.2E−12

K-S = Kolmogorov-Smirnov, NGIW = new generalized inverse Weibull, NGIR = new generalized inverse Rayleigh,
MIW = modified inverse Weibull, MIR = modified inverse Rayleigh, IW = inverse Weibull, IR = inverse Rayleigh.

distribution provides better fit than the sub-models of the NGIW distribution; therefore, the proposed
NGIW distribution is good model for the failure times of air conditioning data. We also apply the
Kolmogorov-Smirnov (K-S) test, the Cramér-von Mises and Anderson-Darling goodness-of-fit statis-
tics to verify which model provides a better fit for the air conditioning system failure time data; the
results of these statistics are displayed on Table 5. Table 5 illustrate that the NGIW distribution has
the smallest values of these statistics; therefore, the proposed extended model can be chosen as the
best model among the six fitted models.

We use the pp-plot to assess the failure time distribution, empirical survival function and the esti-
mated survival function to verify the graphical goodness-of-fit of the NGIW distribution; the estimated
hazard function of the NGIW distribution are displayed in Figure 6. The fitted survival plot and pp-
plot shows that the NGIW distribution has a close approach to the empirical line. Figure 6 suggests
that the failure times of the air conditioning system of the aircraft data has decreasing hazard function
with time and follows the infant mortality period of bathtub shape failure rates. Failure is generally
caused by fatigue factors during this period.

8. Conclusion

We introduce the NGIW distribution, (an extension of the MIW distribution) and study its theoretical
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Figure 6: PP-Plot, estimated survival and hazard curves for the new generalized inverse Weibull (NGIW) distri-
bution for air conditioning data.

properties. The new parameter β provides additional flexibility for fitting lifetime data. The new
extended model has an upside-down hazard rate function. We study some structural properties of the
NGIW distribution that include explicit expressions for the moments, moment generating function
and quantile function. We also derive the moment of order statistics. We evaluate the performance
of ML method to estimate NGIW parameters using Monte Carlo simulation. The usefulness of the
NGIW distribution is illustrated in an application of the air conditioning system of aircraft data. Based
on the seven goodness-of-fit measures, the NGIW distribution provides better fit than the other five
sub-models. We hope that the proposed model may attract wider applications in many areas of real
world data sets.

Acknowledgements

The authors thank the anonymous reviewer for careful reading of the research article and constructive
comments that greatly improved this paper.



160 Muhammad Shuaib Khan, Robert King

0.5 1.0 1.5 2.0 2.5 3.0

−
35

00
−

25
00

−
15

00

α

lo
g.

lik
el

ih
oo

d

2 3 4 5 6 7 8

−
21

9.
0

−
21

8.
0

−
21

7.
0

β

lo
g.

lik
el

ih
oo

d

0.990 0.995 1.000 1.005 1.010

−
40

0
−

20
0

0

η

lo
g.

lik
el

ih
oo

d

0.6 0.8 1.0 1.2 1.4 1.6

−
17

65
−

17
55

−
17

45

θ

lo
g.

lik
el

ih
oo

d

Figure 7: The profile of log-likelihood functions for α, β, η and θ for air conditioning data.

References

Cordeiro GM, Gomes AE, da-Silva CQ, and Ortega EM (2013). The beta exponentiated Weibull
distribution, Journal of Statistical Computation and Simulation, 83, 114–138.

de Gusmão FR, Ortega EM, and Cordeiro GM (2011). The generalized inverse Weibull distribution,
Statistical Papers, 52, 591–619.

Gupta RD and Kundu D (1999). Theory & methods: generalized exponential distributions, Australian
& New Zealand Journal of Statistics, 41, 173–188.

Hemmati F, Khorram E, and Rezakhah S (2011). A new three-parameter ageing distribution, Journal
of Statistical Planning and Inference, 141, 2266–2275.

Jiang R, Murthy DNP, and Ji P (2001). Models involving two inverse Weibull distributions, Reliability
Engineering & System Safety, 73, 73–81.

Jiang R, Zuo MJ, and Li HX (1999). Weibull and inverse Weibull mixture models allowing negative
weights, Reliability Engineering & System Safety, 66, 227–234.



New generalized inverse Weibull distribution 161

Keller AZ, Kamath ARR, and Perera UD (1982). Reliability analysis of CNC machine tools, Relia-
bility Engineering, 3, 449–473.

Khan MS and King R (2012). Modified inverse Weibull distribution, Journal of Statistics Applications
& Probability, 1, 115–132.

Khan MS, King R, and Hudson I (2014). Characterizations of the transmuted Inverse Weibull distri-
bution, ANZIAM Journal, 55, C197–C217.

Khan MS, Pasha GR, and Pasha AH (2008). Theoretical analysis of Inverse Weibull distribution,
WSEAS Transactions on Mathematics, 7, 30–38.

Linhart H and Zucchini W (1986). Model Selection, Wiley, New York.
Mudholkar GS, Srivastava DK, and Kollia GD (1996). A generalization of the Weibull distribution

with application to the analysis of survival data, Journal of the American Statistical Association,
91, 1575–1583.

Nadarajah S and Kotz S (2003). The exponentiated Frechet distribution, Retrieved March 1, 2016,
from: http://interstat.statjournals.net/YEAR/2003/abstracts/0312001.php

Silva GO, Ortega EM, and Cordeiro GM (2010). The beta Modified Weibull distribution, Lifetime
Data Analysis, 16, 409–430.

Sultan KS, Ismail MA, and Al-Moisheer AS (2007). Mixture of two inverse Weibull distributions:
properties and estimation, Computational Statistics & Data Analysis, 51, 5377–5387.

Received November 26, 2015; Revised February 23, 2016; Accepted March 3, 2016


