• 제목/요약/키워드: maximum moment

검색결과 906건 처리시간 0.027초

여자 배구 선수들의 스파이크 도약 시 무릎보호대가 전방십자인대 부상위험 요인에 미치는 영향 (Effects of Knee Brace on the Anterior Cruciate Ligament Injury Risk Factors during Spike Take Off in Female Volleyball Players)

  • 양창수;임비오
    • 한국운동역학회지
    • /
    • 제24권1호
    • /
    • pp.27-33
    • /
    • 2014
  • In volleyball, the most common injuries are anterior cruciate ligament (ACL) tears. For this reason, volleyball players frequently use knee brace as prophylactic and rehabilitation measures. The purpose of the study was to investigate the effects of knee brace on anterior cruciate ligament injuries risk factors during spike take off in female volleyball players. Fifteen female volleyball players were recruited and performed randomly spike take off with and without knee brace. Kinematics and ground reaction data were collected to estimate the anterior cruciate ligament injuries risk factors. The ACL risk factors are knee maximum flexion angle, thigh maximum adduction angle, thigh maximum internal rotation angle, shank maximum abduction angle, shank maximum external rotation angle, knee maximum extension moment and knee maximum abduction moment. Data were analyzed with paired samples t-test with Bonfferoni collection. Female volleyball players with knee brace had no significant results in knee maximum flexion angle, thigh maximum adduction angle, thigh maximum internal rotation angle, shank maximum abduction angle and shank maximum external rotation angle compare to without knee brace. Female volleyball players, however, with knee brace showed more reduced knee maximum extension moment and knee maximal abduction moment than without knee brace. In conclusion, Female volleyball players with knee brace reduced anterior cruciate ligament stress.

Comparison of parameter estimation methods for normal inverse Gaussian distribution

  • Yoon, Jeongyoen;Kim, Jiyeon;Song, Seongjoo
    • Communications for Statistical Applications and Methods
    • /
    • 제27권1호
    • /
    • pp.97-108
    • /
    • 2020
  • This paper compares several methods for estimating parameters of normal inverse Gaussian distribution. Ordinary maximum likelihood estimation and the method of moment estimation often do not work properly due to restrictions on parameters. We examine the performance of adjusted estimation methods along with the ordinary maximum likelihood estimation and the method of moment estimation by simulation and real data application. We also see the effect of the initial value in estimation methods. The simulation results show that the ordinary maximum likelihood estimator is significantly affected by the initial value; in addition, the adjusted estimators have smaller root mean square error than ordinary estimators as well as less impact on the initial value. With real datasets, we obtain similar results to what we see in simulation studies. Based on the results of simulation and real data application, we suggest using adjusted maximum likelihood estimates with adjusted method of moment estimates as initial values to estimate the parameters of normal inverse Gaussian distribution.

Wind load combinations and extreme pressure distributions on low-rise buildings

  • Tamura, Yukio;Kikuchi, Hirotoshi;Hibi, Kazuki
    • Wind and Structures
    • /
    • 제3권4호
    • /
    • pp.279-289
    • /
    • 2000
  • The main purpose of this paper is to demonstrate the necessity of considering wind load combinations even for low-rise buildings. It first discusses the overall quasi-static wind load effects and their combinations to be considered in structural design of low-rise buildings. It was found that the maximum torsional moment closely correlates with the maximum along-wind base shear. It was also found that the instantaneous pressure distribution causing the maximum along-wind base shear was quite similar to that causing the maximum torsional moment, and that this asymmetric pressure pattern simultaneously accompanies considerable across-wind and torsional components. Secondly, the actual wind pressure distributions causing maximum quasi-static internal forces in the structural frames are conditionally sampled and their typical pressure patterns are presented.

노면에 접촉된 자동차 타이어의 응력 해석 (Stress Analysis of Automotive Tire at Contact on Road Surface)

  • 조재웅;한문식
    • 한국기계가공학회지
    • /
    • 제8권2호
    • /
    • pp.40-45
    • /
    • 2009
  • This study is analyzed by stress contour of automotive tire at contact on road surface. Maximum equivalent stress as 61200Pa is shown on the lower mid part in case of tire contacted on road surface. As the air pressure of tire increases, maximum total deformation as 5mm is shown on the side part of tire. It can be shown that the side part of tire is unstabilized. There is no load effect on tire at its upper and lower directions. When the moment applied on the side of tire is increased 1.4 times as its value, the value of maximum principal stress is increased 1.4 times. The stress at the tire is in proportion to the moment applied on the its side. The tire tends to incline toward its side by this moment.

  • PDF

Effects of a 12-week Combined Exercise Program on Gait Parameters in Elderly Women with Osteoarthritis

  • Lee, Jin
    • 한국운동역학회지
    • /
    • 제28권4호
    • /
    • pp.227-236
    • /
    • 2018
  • Objective: The purpose of this study was to investigate the effects of a 12-week combined exercise program on gait parameters in elderly women with osteoarthritis. Method: The subjects of this study were 11 elderly women (age: $67.09{\pm}2.47$, height: $157.35{\pm}4.30cm$, weight: $62.49{\pm}6.36kg$) with knee osteoarthritis. The combined exercise program of this study was divided into aerobic exercise and lower extremity strengthening exercises. The exercises were performed for 60 minutes per session, three times a week, for a total of 12 weeks. The maximum joint moments of the hip, knee, and ankle joints with walking were obtained with 8-3D cameras (MX-T20, Vicon, USA) and 2-force plate (AMTI OR6-7-400, AMTI, USA). SPSS Windows version 23.0 was used for statistical analysis. A paired t-test was used for pre-post comparison. An alpha level of .05 was utilized in all tests. Results: The maximum extension moment was significantly higher in the hip joint after P1 on the X axis. The maximum joint moment of P3 in extension was statistically significantly lower after intervention. On the Z axis, the maximum joint moment was significantly lower after the exercise intervention at P3. There was a statistically significant increase in the extension moment of the left and right knee joints in the X axis after exercise intervention. In the right ankle joint, P1 (plantar flexion moment) showed a statistically significant high moment after exercise intervention. Conclusion: These results suggest that combined exercise, including lower limb and aerobic exercise, may have a positive effect on mobility and walking moments in patients with osteoarthritis of the knee.

알루미늄 압출부재의 굽힘붕괴 특성식 산출에 관한 연구 (A Study on the Specific Equation of Bending Collapse for Extruded Aluminum Members)

  • 강신유;장혜정
    • 산업기술연구
    • /
    • 제20권B호
    • /
    • pp.131-138
    • /
    • 2000
  • In this paper, we would like to develop the bending collapse specific equation of aluminum members which are usually used in light-weight vehicle or electromobiles. The result of the developed equation are compared with that of test and finite element methods as the moment-rotational angle curves. Three types of aluminum members are tested with the pure bending collapse test rig. PAM-CRASH and ABAQUS program are used for finite element analysis. As the result the developed bending collapse governing equation is accurate in estimating the yield moment and the maximum moment. Especially, in the case of the local buckling and the delayed buckling, the developed equation is better effective than F.E.M.

  • PDF

Influence of moisture content on main mechanical properties of expansive soil and deformation of non-equal-length double-row piles: A case study

  • Wei, Meng;Liao, Fengfan;Zhou, Kerui;Yan, Shichun;Liu, Jianguo;Wang, Peng
    • Geomechanics and Engineering
    • /
    • 제30권2호
    • /
    • pp.139-151
    • /
    • 2022
  • The mechanical properties of expansive soil are very unstable, highly sensitive to water, and thus easy to cause major engineering accidents. In this paper, the expansive soil foundation pit project of the East Huada Square in the eastern suburb of Chengdu was studied, the moisture content of the expansive soil was considered as an important factor that affecting the mechanics properties of expansive soil and the stability of the non-equal-length double-row piles in the foundation pit support. Three groups of direct shear tests were carried out and the quantitative relationships between the moisture content and shear strength τ, cohesion c, internal friction angle φ were obtained. The effect of cohesion and internal friction angle on the maximum displacement and the maximum bending moment of piles were analyzed by the finite element software MIDAS/GTS (Geotechnical and Tunnel Analysis System). Results show that the higher the moisture content, the smaller the matrix suction, and the smaller the shear strength; the cohesion and the internal friction angle are exponentially related to the moisture content, and both are negatively correlated. The maximum displacement and the maximum bending moment of the non-equal length double-row piles decrease with the increase of the cohesion and the internal friction angle. When the cohesion is greater than 33 kPa or the internal friction angle is greater than 25.5°, the maximum displacement and maximum bending moment of the piles are relatively small, however, once crossing the points (the corresponding moisture content value is 24.4%), the maximum displacement and the maximum bending moment will increase significantly. Therefore, in order to ensure the stability and safety of the foundation pit support structure of the East Huada Square, the moisture content of the expansive soil should not exceed 24.4%.

파형강판 암거의 근사해석 (Approximate Analysis of Corrugated Steel Culverts)

  • 최동호;김원철;김기남
    • 한국지반환경공학회 논문집
    • /
    • 제2권4호
    • /
    • pp.15-27
    • /
    • 2001
  • 본 연구에서는 유한요소해석을 통해 파형강판 암거의 단면력(압축력, 휨모멘트) 계산식을 제안하였다. 3단계의 시공과정(정점부까지의 뒷채움, 토피고까지의 뒷채움, 활하중 재하)에 대해 지반-구조물 상호작용을 고려한 거동분석으로부터 최대 압축력 및 최대 휨모멘트 발생조건을 도출하였고, 이러한 거동분석 결과와 반원 아치구조에 대한 Castigliano 제2정리의 적용으로부터 단면력식의 형태를 제안하였다. 또한, 최대 압축력 및 최대 휨모멘트를 유발하는 조건하에서 다양한 기하형태와 지반-구조물의 상대강성을 고려한 유한요소해석 결과로부터 제안된 단면력식을 구성하는 계수를 결정하였다.

  • PDF

감육형상 및 내압이 원자력 감육배관의 파단에 미치는 영향 -내압과 굽힘모멘트가 동시에 작용하는 경우- (Effect of Wall Thinned Shape and Pressure on Failure of Wall Thinned Nuclear Piping Under Combined Pressure and Bending Moment)

  • 심도준;임환;최재붕;김영진;김진원;박치용
    • 대한기계학회논문집A
    • /
    • 제27권5호
    • /
    • pp.742-749
    • /
    • 2003
  • Failure of a pipeline due to local wall thinning is getting more attention in the nuclear power plant industry. Although guidelines such as ANSI/ASME B31G and ASME Code Case N597 are still useful fer assessing the integrity of a wall thinned pipeline, there are some limitations in these guidelines. For instance, these guidelines consider only pressure loading and thus neglect bending loading. However, most Pipelines in nuclear power plants are subjected to internal pressure and bending moment due to dead-weight loads and seismic loads. Therefore, an assessment procedure for locally wall thinned pipeline subjected to combined loading is needed. In this paper, three-dimensional finite element(FE) analyses were performed to simulate full-scale pipe tests conducted for various shapes of wall thinned area under internal pressure and bending moment. Maximum moments based on true ultimate stress(${\alpha}$$\sub$u,t/) were obtained from FE results to predict the failure of the pipe. These results were compared with test results, which showed good agreement. Additional finite element analyses were performed to investigate the effect of key parameters, such as wall thinned depth, wall thinned angle and wall thinned length, on maximum moment. Also, the effect of internal pressure on maximum moment was investigated. Change of internal pressure did not show significant effect on the maximum moment.

성토지반에 타입된 H 말뚝의 횡방향 장기지지거동 (Lateral long term behavior of Driven H-Piles in Embankment)

  • 박영호;정경자;김주경;김동인
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.575-582
    • /
    • 2002
  • To find a lateral long term behavior of driven H-piles in embankment, inclinometer is installed at pile and measurement is done during a year. When behavior of measured slope angles is in accord with behavior of nonlinear p-y curves(Reese, Murchison and O'Neil, Matlock's p-y analysis), maximum displacement of pile head, maximum stresses and maximum bending of pile obtained from the numerical analysis are shown. As results, maximum lateral displacement at pile head, maximum stress and maximum bending moment of pile are shown linear behavior. And maximum lateral load, maximum lateral displacement, and maximum bending moment at pile head obtained from the numerical analysis are 8∼12.4tonf, 9∼10.1mm, and 10.39∼12.67tonf-m per pile according to the curves, respectively.

  • PDF