• 제목/요약/키워드: maximum likelihood method

검색결과 999건 처리시간 0.033초

토지피복분류에 있어 신경망과 최대우도분류기의 비교 (A comparison of neural networks and maximum likelihood classifier for the classification of land-cover)

  • 전형섭;조기성
    • 대한공간정보학회지
    • /
    • 제8권2호
    • /
    • pp.23-33
    • /
    • 2000
  • 본 연구에서는 인공위성영상을 이용한 토지피복 분류방법 중 파라메트릭한 분류와 비-파라메트릭한 분류의 대표성을 띤 최대우도 분류법과 신경망을 이용한 분류방법을 사용하여 분류정확도를 비교하였다. 분류정확도의 평가에 있어서 일반적인 분석가들이 사용하는 훈련지역에 대한 분류정확도의 분석뿐만 아니라, 시험지역에 대한 정확도분석을 하였다. 그 결과, 최대우도분류기에 비하여 신경망의 분류기가 일반적인 훈련데이터의 분류에 있어서 약 3% 우월하였으며, 지상검증데이터를 사용한 분류결과에서는 시험에 사용된 두 분류기 모두 빈약한 분류결과를 나타내었으나, 신경망에 의한 분류가 최대우도에 비하여 약 10%정도 보다 신뢰할 수 있는 결과를 얻을 수 있었다.

  • PDF

프레임레벨유사도정규화를 적용한 문맥독립화자식별시스템의 구현 (Realization a Text Independent Speaker Identification System with Frame Level Likelihood Normalization)

  • 김민정;석수영;김광수;정현열
    • 융합신호처리학회논문지
    • /
    • 제3권1호
    • /
    • pp.8-14
    • /
    • 2002
  • 본 논문에서는 Gaussian mixture model을 이용한 실시간 문맥독립화자식별시스템을 구현하여 인식실험을 수행하였으며, 인식시스템의 성능을 향상시키기 위하여 화자검증시스템에서 좋은 결과를 보인 유사도 정규화(Likelihood normalization)방법을 적용하여 인식실험을 하였다. 시스템은 크게 전처리단과 화자모델생성단, 화자식별단으로 나누어진다. 전처리단에서는 화자의 발성변화를 고려하여 CMN(Cepstral mean normalization)과 Silence removal 방법을 적용하였다. 화자모델생성단에서는, 화자발성의 음향학적 특징을 잘 표현할 수 있는 GMM(Gaussian mixture model)을 이용하여 화자모델을 작성하였으며, GMM의 파라미터를 최적화하기 위하여 MLE(Maximum likelihood estimation)방법을 사용하였다. 화자식별단에서는 학습된 데이터와 테스트용 데이터로부터 ML(Maximum likelihood)을 이용하여 유사도를 계산하였으며, 이 과정에서 유사도 정규화를 적용한 경우에는 프레임단위로 유사도를 계산하게 된다. 계산된 유사도는 스코어(S$_{C}$)로 표현하였고, 가장 높은 스코어를 가지는 화자가 인식화자로 결정된다. 화자인식에서 발성의 종류로는 문맥독립 문장을 사용하였다. 인식실험을 위해서는 ETRI445 DB와 KLE452 DB를 사용하였으며, 특징파라미터로서는 켑스트럼계수 및 회귀계수값만을 사용하였다. 인식실험에서는 등록화자의 수를 달리하여 일반적인 화자식별방법과 프레임단위유사도정규화방법으로 각각 인식실험을 하였다. 인식실험결과, 프레임단위유사도정규화방법이 인식화자수가 많아지는 경우에 일반적인 방법보다 향상된 인식률을 얻을 수 있었다.

  • PDF

A data-adaptive maximum penalized likelihood estimation for the generalized extreme value distribution

  • Lee, Youngsaeng;Shin, Yonggwan;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.493-505
    • /
    • 2017
  • Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.

공간다중화 MIMO 시스템을 위한 Soft Output 성능향상 기법 (A Soft Output Enhancement Technique for Spatially Multiplexed MIMO Systems)

  • 김진민;임태호;김재권;이주현;조용수
    • 한국통신학회논문지
    • /
    • 제33권9C호
    • /
    • pp.734-742
    • /
    • 2008
  • 무선통신 채널에서 높은 전송 속도를 가능하게 하는 공간다중화 MIMO 시스템에서 다중화된 신호를 검출하는 것은 어려운 작업이며, 최근 다양한 신호검출 기법들이 개발되었다. 다양한 신호검출기법 중 maximum likelihood detection with QR decomposition and M-algorithm (QRM-MLD), sphere decoding (SD), QOC, MOC와 같은 기법들은 maximum liklihood (ha)기법과 유사한 경판정 달성한다. 그러나 일반적으로 이러한 기법들은 soft output의 신뢰도가 저하되는 문제점을 가진다. 본 논문에서는 기존 신호검출기법들의 soft output 신뢰도를 향상시키는 기법을 제안한다. 모의실험을 통하여 기존의 기법들과 결합시 제안된 방법에 의해 개선된 성능을 얻을 수 있음을 보인다.

Gamma 및 Generalized Gamma 분포 모형에 의한 적정 설계홍수량의 유도 (I) -Gamma 분포 모형을 중심으로- (Derivation of Optimal Design Flood by Gamma and Generalized Gamma Distribution Models(I) - On the Gamma Distribution Models -)

  • 이순혁;박명근;정연수;맹승진;류경식
    • 한국농공학회지
    • /
    • 제39권3호
    • /
    • pp.83-95
    • /
    • 1997
  • This study was conducted to derive optimal design floods by Gamma distribution models of the annual maximum series at eight watersheds along Geum , Yeong San and Seom Jin river Systems, Design floods obtained by different methods for evaluation of parameters and for plotting positions in the Gamma distribution models were compared by the relative mean errors and graphical fit along with 95% confidence interval plotted on Gamma probability paper. The results were analyzed and summarized as follows. 1.Adequacy for the analysis of flood flow data used in this study was confirmed by the tests of Independence, Homogeneity and detection of Outliers. 2.Basic statistics and parameters were calculated by Gamma distribution models using Methods of Moments and Maximum Likelihood. 3.It was found that design floods derived by the method of maximum likelihood and Hazen plotting position formular of two parameter Gamma distribution are much closer to those of the observed data in comparison with those obtained by other methods for parameters and for plotting positions from the viewpoint of relative mean errors. 4.Reliability of derived design floods by both maximum likelihood and method of moments with two parameter Gamma distribution was acknowledged within 95% confidence interval.

  • PDF

Extended Quasi-likelihood Estimation in Overdispersed Models

  • Kim, Choong-Rak;Lee, Kee-Won;Chung, Youn-Shik;Park, Kook-Lyeol
    • Journal of the Korean Statistical Society
    • /
    • 제21권2호
    • /
    • pp.187-200
    • /
    • 1992
  • Samples are often found to be too heterogeneous to be explained by a one-parameter family of models in the sense that the implicit mean-variance relationship in such a family is violated by the data. This phenomenon is often called over-dispersion. The most frequently used method in dealing with over-dispersion is to mix a one-parameter family creating a two parameter marginal mixture family for the data. In this paper, we investigate performance of estimators such as maximum likelihood estimator, method of moment estimator, and maximum quasi-likelihood estimator in negative binomial and beta-binomial distribution. Simulations are done for various mean parameter and dispersion parameter in both distributions, and we conclude that the moment estimators are very superior in the sense of bias and asymptotic relative efficiency.

  • PDF

PROC MIXED를 활용한 혼합모형의 신뢰구간추정 (Interval Estimation in Mixed Model by Use of PROC MIXED)

  • 박동준
    • 응용통계연구
    • /
    • 제19권2호
    • /
    • pp.349-360
    • /
    • 2006
  • SAS의 PROC MIXED를 사용하면 일반적인 ANOVA 추정량뿐만 아니라 더 많은 장점을 갖는 제한최대우도추정법 또는 최대우도추정법으로 모수들을 추론할 수 있다. 혼합모형에 속하는 불균형중첩오차구조를 갖는 선형회귀모형에서 랜덤효과와 관련된 그룹간 분산의 신뢰 구간과 고정효과에 해당되는 회귀 계수들에 대 한 신뢰구간을 구하기 위하여 세 가지 크기를 갖는 표본에 대하여 PROC MIXED를 사용하였다. 모의실험을 실행한 결과, 대표본인 경우에는 모수들의 신뢰 구간을 구하기 위하여 PROC MIXED를 활용할 수 있지만, 소표본인 경우에는 PROC MIXED를 사용할 경우, 그룹간 분산의 신뢰 구간과 회귀계수 가운데 절편항의 신뢰구간은 주어진 신뢰계수를 지키지 못하는 것을 보인다.

On the Use of Maximum Likelihood and Input Data Similarity to Obtain Prediction Intervals for Forecasts of Photovoltaic Power Generation

  • Fonseca Junior, Joao Gari da Silva;Oozeki, Takashi;Ohtake, Hideaki;Takashima, Takumi;Kazuhiko, Ogimoto
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.1342-1348
    • /
    • 2015
  • The objective of this study is to propose a method to calculate prediction intervals for one-day-ahead hourly forecasts of photovoltaic power generation and to evaluate its performance. One year of data of two systems, representing contrasting examples of forecast’ accuracy, were used. The method is based on the maximum likelihood estimation, the similarity between the input data of future and past forecasts of photovoltaic power, and on an assumption about the distribution of the error of the forecasts. Two assumptions for the forecast error distribution were evaluated, a Laplacian and a Gaussian distribution assumption. The results show that the proposed method models well the photovoltaic power forecast error when the Laplacian distribution is used. For both systems and intervals calculated with 4 confidence levels, the intervals contained the true photovoltaic power generation in the amount near to the expected one.

Maximum Likelihood-based Automatic Lexicon Generation for AI Assistant-based Interaction with Mobile Devices

  • Lee, Donghyun;Park, Jae-Hyun;Kim, Kwang-Ho;Park, Jeong-Sik;Kim, Ji-Hwan;Jang, Gil-Jin;Park, Unsang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4264-4279
    • /
    • 2017
  • In this paper, maximum likelihood-based automatic lexicon generation using mixed-syllables is proposed for unlimited vocabulary voice interface for East Asian languages (e.g. Korean, Chinese and Japanese) in AI-assistant based interaction with mobile devices. The conventional lexicon has two inevitable problems: 1) a tedious repetition of out-of-lexicon unit additions to the lexicon, and 2) the propagation of errors during a morpheme analysis and space segmentation. The proposed method provides an automatic framework to solve the above problems. The proposed method produces a level of overall accuracy similar to one of previous methods in the presence of one out-of-lexicon word in a sentence, but the proposed method provides superior results with the absolute improvements of 1.62%, 5.58%, and 10.09% in terms of word accuracy when the number of out-of-lexicon words in a sentence was two, three and four, respectively.

변화시점이 있는 영과잉-포아송모형에서 돌출대립가설에 대한 우도비검정 (Likelihood Ratio Test for the Epidemic Alternatives on the Zero-Inflated Poisson Model)

  • 김경무
    • Journal of the Korean Data and Information Science Society
    • /
    • 제9권2호
    • /
    • pp.247-253
    • /
    • 1998
  • 영과잉-포아송모형에서 변화시점이 있는 경우, 돌출대립가설에 대한 우도비검정을 이용하여 변화시점의 유 무를 알아보았다. 변화시점에 대한 추정은 최소제곱법을 이용하였고 이를 최우추정법을 이용하기 위한 초기치로 활용하였다. 또한 대립가설에 대한 몇가지 흥미있는 모수들을 적률법을 이용하여 추정하였다. 모의실험을 통하여 이들 추정 량을 비교하였고 결과 변화시점에 대한 추정은 최소제곱법보다는 최우추정법이 바람직하게 나타났고 흥미있는 몇가지 모수들에 대해서는 최우추정량이 적률추정량보다 우수하게 나타났다.

  • PDF