• 제목/요약/키워드: maximum likelihood classification

검색결과 160건 처리시간 0.032초

위성영상과 GIS를 이용한 과수재배 분포도 작성 기법에 관한 연구 (A Study on the Preparation Method of Fruit Cropping Distribution Map using Satellite Images and GIS)

  • 조명희;부기동;이정협;이광재
    • 한국지리정보학회지
    • /
    • 제3권4호
    • /
    • pp.73-86
    • /
    • 2000
  • 본 연구에서는 다시기 위성영상과 GIS(geographic information system)를 이용하여 과수재배분포도 작성에 있어 다양한 분류기법을 적용하여 보다 효율적인 기법도출에 그 목적을 두고 있다. 이를 위해 다시기별 Landsat TM영상과 현지 조사자료 및 기존 과수재배 면적 통계자료를 활용하여 각 분류기법에 대한 시기별 및 과수별 분포 특성과 비교 분석함으로서 과수재배분포도 작성에 있어 효과적인 분류기법을 도출하였다. 다시기 Landsat TM 영상을 이용한 과수재배 분포도작성을 위해서는 초가을 영상으로 MLC(maximum likelihood classification)기법을 적용하는 것이 가장 효율적인 것으로 나타났다. 또한 GIS를 통한 공간분석으로 행정별 과수재배의 면적을 효과적으로 추출함과 동시에 과수재배분포의 형태를 효율적으로 파악 할 수 있음을 규명하였다.

  • PDF

고해상도 위성영상의 효율적 지형분류기법 연구 (A Study on Efficient Topography Classification of High Resolution Satelite Image)

  • 임혜영;김황수;최준석;송승호
    • 대한공간정보학회지
    • /
    • 제13권3호
    • /
    • pp.33-40
    • /
    • 2005
  • 위성영상에서 실제 지표면의 형태와 지상물체를 구분하여 분류하는 것은 원격탐사의 중요한 목적중의 하나이다. 다중분광영상을 이용한 분류는 일반적인 토지피복도의 제작에 이용되어지고 있으며 영상분류의 방법에는 많은 이론들이 사용되어지고 있다. 본 연구는 대구 달성군 지역의 IKONOS 영상을 MLC(Maximum Likelihood Classification), ANN(Artificial neural network), SVM(Support Vector Machine), Naive Bayes 분류기법들을 이용하여 각각의 분류정확도를 비교 분석하였다. 또한 PCA/ICA 전처리 과정을 거친 분류기법들 결과와, Boosting 알고리즘 과정을 거친 후의 결과를 비교하였다. 본 연구의 목적은 적절한 전처리과정과 분류기법을 수행함으로써 가장 효율적인 지형분류 방법을 획득하는데 그 목적이 있다.

  • PDF

원격탐사 데이터의 이차계획법에 의한 토지피복분류에 관한 연구 (A Study for the Land-cover Classification of Remote Sensed Data Using Quadratic Programming)

  • 전형섭;조기성
    • 한국측량학회지
    • /
    • 제19권2호
    • /
    • pp.163-172
    • /
    • 2001
  • 본 연구에서는 원격탐사 데이터의 분류방법으로서 이차계획법을 토지피복 추출에 적용하였으며, 주제도 추출에 일반적으로 사용되는 최대우도와 신경망의 분류결과와 정확도를 비교하여 그 적용성을 검토하였다. 그 결과, 이차계획법에 의한 분류방법이 최대우도법에 비하여 평균 6%정도의 향상된 분류결과를 도출할 수 있어서 원격탐사 데이터의 분류에 이차계획법을 적용할 수 있으리라 판단되었다. 또한 이차계획법에 의한 분류에서는 클래스 구성비가 클래스 결정에 직접적인 영향을 주어 기존의 이진적인 분류방법에서 무시되었던 결과 값들을 명확하게 나타낼 수 있었다.

  • PDF

위성영상을 이용한 토지이용분류에 관한 연구 (Landuse classifications from Thematic Mapper Images Using a Maximum Likelihood Method)

  • 박희성;박승우
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1998년도 학술발표회 발표논문집
    • /
    • pp.366-369
    • /
    • 1998
  • To get the knowledge of land uses for watersheds, Thematic Mapper image from Landsat 5 satellite was used. The image was classified into land covers/uses by maximum likelihood classification technique. Land uses from the satellite image in this study was compared with those from the topographical map in previous. It was found that Land uses from the satellite image had a good reflection of real situations and more advantage in the reduction of time and cost.

  • PDF

ML분류를 사용한 유방암 항체 조직 영상분할 (Segmentation of Immunohistochemical Breast Carcinoma Images Using ML Classification)

  • 최흥국
    • 한국멀티미디어학회논문지
    • /
    • 제4권2호
    • /
    • pp.108-115
    • /
    • 2001
  • 본 연구에서는 RGB칼라영상에서 세 칼라 객체의 색상에 따라 정량적으로 분류하기 위하여 ML(Maximum Likelihood) 분류법 을 개선 시도하여 보았다. RGB 칼라 영상이라 하면 빨강, 초록, 파랑의 세 밴드로 이루어진다. 스펙트룸과 공간상의 요소를 고려한다면 3차원적인 구조를 갖게 된다. 이러한 3차원 구조의 voxel를 RGB cube에 투사하여 이로부터 ML분류법의 개선 방법론을 적용하여 보았다. 전례적으로 쉽게 사용되어지는 Box 분류법과 비교 검토하여 보았으며 Bayesian decision 이론을 기반으로한 통계학적인 ML 분류법을 사용하였다. 유방암 항체조직영상에 이 방법론을 응용하며 양성 세포핵 음성 세포핵 그리고 배경을 분류하는데 좋은 결과를 얻어 임상에서 유방암 환자의 예후 및 진단에 사용할 수 있도록 연구하였다.

  • PDF

외국어 발음오류 검출 음성인식기를 위한 MCE 학습 알고리즘 (MCE Training Algorithm for a Speech Recognizer Detecting Mispronunciation of a Foreign Language)

  • 배민영;정용주;권철홍
    • 음성과학
    • /
    • 제11권4호
    • /
    • pp.43-52
    • /
    • 2004
  • Model parameters in HMM based speech recognition systems are normally estimated using Maximum Likelihood Estimation(MLE). The MLE method is based mainly on the principle of statistical data fitting in terms of increasing the HMM likelihood. The optimality of this training criterion is conditioned on the availability of infinite amount of training data and the correct choice of model. However, in practice, neither of these conditions is satisfied. In this paper, we propose a training algorithm, MCE(Minimum Classification Error), to improve the performance of a speech recognizer detecting mispronunciation of a foreign language. During the conventional MLE(Maximum Likelihood Estimation) training, the model parameters are adjusted to increase the likelihood of the word strings corresponding to the training utterances without taking account of the probability of other possible word strings. In contrast to MLE, the MCE training scheme takes account of possible competing word hypotheses and tries to reduce the probability of incorrect hypotheses. The discriminant training method using MCE shows better recognition results than the MLE method does.

  • PDF

다중분광 및 다중시기 영상자료 통합을 통한 토지피복분류 갱신 (Updating Land Cover Classification Using Integration of Multi-Spectral and Temporal Remotely Sensed Data)

  • 장동호
    • 대한지리학회지
    • /
    • 제39권5호
    • /
    • pp.786-803
    • /
    • 2004
  • 최근, 다중 센서 영상과 GIS 주제도 정보를 이용한 토지 피복 분류에 대해 관심이 증가하고 있는 추세이다. 그러나. 분류에 필요한 효과적인 GIS 정보를 충분히 보유하고 있음에도 불구하고, 최대우도법(MLE) 같은 전통적인 방법은 기존의 컴퓨터 프로그램들이 GTS 자료를 제대로 다룰 수 없다는 이유로 유용한 정보의 이용에 제한을 받아 왔다. 본 연구에서는 다중 파장대 및 다중 시기 영상을 이용하여 새로운 영상 분류기법을 제안하고자 한다. 특히 MLE기법을 확대하여 다중 스펙트럼 영상 자료 및 토지 피복 분류 자료 등을 함께 사용할 수 있도록 하였다. 또한 파라미터가 데이터에서 추정되는 경우 우도비(LRE) 추정법이 오히려 더 적합할 수 있어서 LRE기법도 함께 사용하였다. 연구 지역은 서해안 안면도 지역이며, 자료는 Landsat ETM+ 영상과 Landsat TM 영상을 이용하여 만든 토지 피복도이다. 연구 결과. 제안된 방법은 단일 스펙트럼 자료를 사용하는 것보다 현저히 개선된 분류 정확도를 나타낸다. 즉, 개선된 분류 영상들은. MLE를 사용했을 때는 $6.2\%$, LRE를 사용했을 때는 $9.2\%$의 분류 정확도 개선을 보였다. 또한 본 연구는 제시된 알고리즘이 토지 피복 변화에 따른 그 지역의 변화 지역 추출도 가능할 것으로 판단된다. 향후 토지피복 분류 결과는 실 세계에서 보다 정확한 의사결정을 위한 보완적인 자료로써 유용하게 사용될 수 있을 것이라는 판단된다.

하이퍼스펙트럴 영상의 분류 기법 비교 (A Comparison of Classification Techniques in Hyperspectral Image)

  • 가칠오;김대성;변영기;김용일
    • 한국측량학회:학술대회논문집
    • /
    • 한국측량학회 2004년도 추계학술발표회 논문집
    • /
    • pp.251-256
    • /
    • 2004
  • The image classification is one of the most important studies in the remote sensing. In general, the MLC(Maximum Likelihood Classification) classification that in consideration of distribution of training information is the most effective way but it produces a bad result when we apply it to actual hyperspectral image with the same classification technique. The purpose of this research is to reveal that which one is the most effective and suitable way of the classification algorithms iii the hyperspectral image classification. To confirm this matter, we apply the MLC classification algorithm which has distribution information and SAM(Spectral Angle Mapper), SFF(Spectral Feature Fitting) algorithm which use average information of the training class to both multispectral image and hyperspectral image. I conclude this result through quantitative and visual analysis using confusion matrix could confirm that SAM and SFF algorithm using of spectral pattern in vector domain is more effective way in the hyperspectral image classification than MLC which considered distribution.

  • PDF

형상인식을 이용한 압력용기 용접부 결함 특성 분류 (The Classification of U.T Defects in the Pressure Vessel Weld using the Pattern Recognition Analysis)

  • 심철무;주영상;홍순신;장기옥
    • 비파괴검사학회지
    • /
    • 제13권2호
    • /
    • pp.11-19
    • /
    • 1993
  • 원자력발전소의 주요 압력용기 용접부에 대한 초음파검사시 결함의 특성과 형태에 대한 정확한 분류는 원자력 발전소의 안전성을 확보하기 위한 결함평가에 중요한 요소이다. 본 연구에서 초음파검사에서 얻어진 결함신호를 digital signal processing 기법으로 처리하여 결함의 특성과 형태를 구분할 수 있는 feature vector를 추출하고 결함의 형태를 형상 인식법을 사용하여 분류 하였다. Training specimen(slit, hole)의 신호와 testing specimen(crack, slag)의 신호를 구분하기 위한 실험에서 사용된 통계적 pattern recognition algorithm은 minimum distance classifier와 maximum likelihood classifier이다. 이러한 형상 classifier를 이용하여 결함의 특성을 정량적으로 분류하여 결함 평가 능력을 향상시켰다.

  • PDF

고해상도 수치항공정사영상기반 하천토지피복지도 제작을 위한 분류기법 연구 (A study of Landcover Classification Methods Using Airborne Digital Ortho Imagery in Stream Corridor)

  • 김영진;차수영;조용현
    • 대한원격탐사학회지
    • /
    • 제30권2호
    • /
    • pp.207-218
    • /
    • 2014
  • 하천을 복원하거나 정비하는데 있어서 중요한 하천의 실태를 파악하는데, 하천 피복상태 정보는 매우 중요하다. 본 연구의 목적은 하천의 피복상태 정보를 효율적이고 경제적으로 획득하기 위해 고해상도 항공정사영상의 효과적인 분류를 위한 감독분류 방법을 시험하고 하천토지피복지도 작성을 위한 최적 분류 방법을 검증하였다. 항공 정사영상의 CIR 영상과 RGB 영상을 이용한 하천토지피복 분석과정은 하천토지피복분류 항목 선정, 감독분류, 정확도 평가 및 분류지도 작성의 순서로 수행하였다. 분류 항목은 수역, 도로, 건물, 초지, 산림, 나지, 밭의 7가지 항목을 선정하였다. 감독 분류 알고리즘으로는 최대우도분류, 최소거리분류, 평행육면체분류, 마하라노비스거리분류 기법을 적용하였다. 감독분류의 분류정확도를 개선하기 위해 필터링과 훈련지역의 왜도 검증을 수행한 결과 CIR 영상을 이용한 최대우도분류 기법이 가장 높은 정확도를 보였다.