• Title/Summary/Keyword: maximum flow

Search Result 3,390, Processing Time 0.03 seconds

Analysis of gas flow and thermal deformation in a muffler (머플러의 유체 유동 및 연성 변형 해석)

  • Cho, Jae-Ung;Han, Moon-Sik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • Car muffler has the role to form the exhaust gas from high temperature- pressure to lower level and reduce the generated noise. Because of this role, its durability decrease as deformation by heat is occurred. This study is to analyze the flow of exhaust gas inside muffler and its coupled thermal deformation with 3-D modeling and ANSYS. There is the fastest flow at the exit of muffler with the maximum velocity of 54 m/s. And the maximum deformation or equivalent stress is shown at this model respectively as 0.00435 mm or 3414.4 MPa by the influence of heat and pressure at part of intersection with inlet and body of muffler.

Importance Analysis for Capacitated Network Systems

  • Jung, Gi-Mun;Park, Dong-Ho;Lee, Seung-Min
    • International Journal of Reliability and Applications
    • /
    • v.2 no.1
    • /
    • pp.73-80
    • /
    • 2001
  • A network, where links have different capacities, is considered to be in functioning state if a specified amount of flow can be transmitted through the network. In this paper, we consider the measures of importance of a link in such networks. We define the structural importance and reliability importance of a link when the required amount of flow is given. We also present the performability importance, which can be used to determine which links should be improved first in order to make the greatest improvement in the expected maximum flow of network. Numerical examples are presented as well for illustrative purpose.

  • PDF

Parallel Machine Scheduling with an Aid of Network Flow Model (네트워크 흐름 모형을 이용한 병행기계(併行機械) 시스템의 스케쥴링)

  • Chung, Nam-Kee;Park, Hyung-Kyu;Yang, Won-Sub
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.15 no.2
    • /
    • pp.11-22
    • /
    • 1989
  • The problem of scheduling n-jobs on m-uniform parallel machines is considered, in which each job has a release time, a deadline, and a processing requirement. The job processing requirements are allocated to the machines so that the maximum of the load differences between time periods is minimized. Based on Federgruen's maximum flow network model to find a feasible schedule, a polynomially bounded algorithm is developed. An example to show the effectiveness of our algorithm is presented.

  • PDF

The Maximum Origin-Destination Flow Path Problem in a Directed Network (유방향 네트워크에서 최대물동량경로 문제에 관한 연구)

  • Seong Gi-Seok;Song Seong-Heon
    • Journal of the military operations research society of Korea
    • /
    • v.18 no.2
    • /
    • pp.151-166
    • /
    • 1992
  • In this paper, we define a problem finding a simple path that maximizes the sum of the satisfied Origin-Destination (O-D) flows between nodes covered by that path as a Maximum O-D Flow Path Problem(MODEP). We established a formulation and suggested a method finding MODEP in a directed network. The method utilizes the constraint relaxation technique and the Dual All Integer Algorithm.

  • PDF

Algorithms for Maximum Integer Multiflow and Multicut in a Ring Network (링 네트워크에서의 최대 다품종정수흐름문제와 최소 다중절단면문제에 대한 해법)

  • Myung, Young-Soo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.32 no.2
    • /
    • pp.89-97
    • /
    • 2007
  • We study the maximum integer multiflow problem and the minimum multicut problem in a ring network. Both problems in a general network are known to be NP-hard. In this paper, we develop polynomial time algorithms to solve the problems. We also prove that even In a ring network, maximum multiflow is not always integral, which implies that the amount of maximum integer flow does not always reach the minimum capacity of multicut.

Maximum Power Output Cycle of Heat Engines (열기관의 최대출력 사이클)

  • 김수연;정평석;노승탁;김효경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.14 no.3
    • /
    • pp.694-701
    • /
    • 1990
  • The cycle of heat engine which produces the maximum power output is constructed when heat sources are finitely constant, and the maximum power as a thermodynamic limit of the engine, is obtained. The characteristics of the maximum power cycle are as follows, which represent the operation conditions and design conditions of the heat engine to produce the maximum power output. In heat exchangers, the temperature profiles of the heat source and the working fluid have the same functional formula and the ratio of the working fluid temperature to the heat source temperature is constant. When heat capacity flow rates(product of the specific heat and the mass flow rate) of the working fluid as well as the heat source are constant, the values of those of working fluid exist between those of two heat sources. The relation of the temperature and the heat capacity flow rate is established without the states of the heat sources and the capacities of heat exchangers, which is ( $T_{h}$/ $T_{H}$)( $C_{h}$/ $C_{H}$)=( $T_{1}$/ $T_{L}$)( $c_{1}$/ $c_{L}$)=1. The capacity of the heat exchanger of hot side is equal to that of cold side regardless of the states of the heat sources and the total capacities of heat exchangers.hangers.ers.

The Effects of Wall Elasticity on Wall Shear Rate of a Divergent Tube (Vascular Graft) (벽 탄성도가 확장관(인조혈관) 벽 전단변형률에 미치는 영향)

  • Rhee, Kye-Han;Lee, Sang-Man
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.6 s.165
    • /
    • pp.912-921
    • /
    • 1999
  • Shear stress acting on the arterial wall by blood flow is an important hemodynamic factor influencing blocking of blood vessel by thickening of an arterial wall. In order to study the effects of wall elasticity on the wall shear rate distribution in an artery-divergent graft anastomosis, a rigid and a elastic model are manufactured. These models are placed in a pulsatile flow loop, which can generate the desired flow waveform. Flow visualization method using a photochromic dye is used to measure the wall shear rate distribution. The accuracy of measuring technique is verified by comparing the measured wall shear rate in the straight portion of a model with the theoretical solution. Measured wall shear rates depend on the wall elasticity and flow waveform. The mean and maximum shear rate in the elastic model are lower than those in rigid model, and the decreases are more significant near the end of a divergent tube. The reduction of mean and maximum of wall shear rate in an elastic model are up to 17 percent.

Aspect-Ratio Effects and Unsteady Pressure Measurements inside a Cross-Flow Impeller

  • Hirata, Katsuya;Onishi, Yusuke;Nagasaka, Shigeya;Matsumoto, Ryo;Funaki, Jiro
    • International Journal of Fluid Machinery and Systems
    • /
    • v.5 no.3
    • /
    • pp.117-125
    • /
    • 2012
  • In the present experimental study, the authors try to clarify the characteristics of the flow around and inside a cross-flow impeller in a typical geometry, over a wide parameter range of an aspect ratio $L/D_2$. In order to eliminate the complicated casing factors, the impeller rotates in open space without any casings. As a result, by using hot wire anemometer measurements and by conventional flow visualisations with a particle image velocimetry technique, the authors show that both the outflow rate and the maximum vorticity attain the maximum for $L/D_2$ = 0.6. In order to investigate the aspect-ratio effect, we further reveal minute fluctuating pressures on an impeller end wall for a singular $L/D_2$ = 0.6. Especially in these pressure measurements, the eccentric vortex is prevented to revolute by the insertion of a tongue, in order to consider the spatial structure of flow more precisely.

Bottom Friction of Combined Wave-Current Flow (천해파와 해류의 해저면 마찰력)

  • 유동훈;김인호
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.177-188
    • /
    • 2001
  • The paper presents the method to estimate the bottom shear stress driven by waves and current on rough turbulent flow. Parameter adjusting technique is suggested for the computation of bed shear stress driven by uni-directional flow, and the value ofpararneter is determined by comparing the computational results against Bijker's laboratory data. For the computation of combined flow bottom shear stress, two methods are presented; one is the modified Bijker approach (BYO Model) and the other is the modified Fredsoe approach (FY Model), both of which are refined by the present writers. BYO model is again refined in the computation of maximum shear stress, and the final version is tested against Bijkcr's laboratory data.

  • PDF

Improvement and Application of Total Maximum Daily Load Management System of Korea: 1. Calculation of Total Amount of Pollutant Load in the Anyangcheon Watershed (우리나라 오염총량관리제도의 개선 및 적용: 1. 안양천 유역의 오염부하량 산정)

  • Kim, Kyung-Tae;Chung, Eun-Sung;Kim, Sang-Ug;Lee, Kil Seong;Seong, Jin-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.6
    • /
    • pp.972-978
    • /
    • 2009
  • This study modifies the present total maximum daily load (TMDL) system of Ministry of Environment and applies to the Anyangcheon watershed. Hydrologic Simulation Program-FORTRAN (HSPF) model is used to simulate both runoff and non-point source pollution, simultaneously, instead of QUAL2E. The drought flow (355th daily flow) is proposed for the target water quantity since it is easier to satisfy low flow (275th daily flow) for the target water quality than drought flow. The increase of discharge is more than the increase of pollutant load except for the period under low flow. The measured unit loads for non-point source are used to consider the regional runoff characteristics. The measured water quantity and quality data are used since the ministry of environment supports only water quality. This analysis results show some reasons for the improvement of the present TMDL system of Korea.