• 제목/요약/키워드: maximum explosion pressure

검색결과 79건 처리시간 0.022초

농도 불균일 LPG-공기 혼합기체의 폭발특성 (Explosion Characteristics of Nonhomogeneous LPG-Air Mixtures)

  • 배정일;김영수;서용칠;신창섭
    • 한국안전학회지
    • /
    • 제8권4호
    • /
    • pp.114-119
    • /
    • 1993
  • The explosion characteristics of nonhomogeneous LPG-Air mixtures was measured in a cylindrical vessel and a pipe. The maximum explosion pressure, the maximum rate of explosion pressure rise, and the flame propagation velocity were measured and compared with that of homogeneous explosion by changing the effective factors on the explosion of nonhomogeneous mixtures such as pressure difference, effusion time and delay time. Explosion was occured even in the lower concentration than the lean flammability limit of mixture. The maximum explosion pressure was increased with increase of LPG concentration, however, the maximum explosion pressure rise was not in the nonhomogeneous explosion. An d the flame propagation velocity was decreased with nonhomogeneity, however, the maximum explosion pressure was always above 0.7kg/$\textrm{cm}^2$.

  • PDF

메틸에틸케톤 퍼옥사이드의 위험성평가에 관한 연구 (A Study on Risk Assessment of Methyl Ethyl Ketone Peroxide)

  • 목연수
    • 한국안전학회지
    • /
    • 제20권4호
    • /
    • pp.34-39
    • /
    • 2005
  • To evaluate characteristics of explosion hazard of Methyl Ethyl Ketone Peroxide, MCPVT was used for this study. In result maximum explosion pressure and maximum explosion pressure rising velocity of MEK-PO were $12.1kgf/cm^2\;and\;106.81kgf/cm^2/s$. As a result or adding metal powder to estimate hazard of explosion, the maximum explosion pressure and maximum explosion pressure rising velocity according to adding Fe powder in MEK-PO increased. In opposite, those decreased resulting in adding Ca powder in MEK-PO.

가연성증기의 폭발한계 및 폭발특성에 관한 연구 (A Study on the Explosion Limit and Explosion Characteristics of Flammable Vapor)

  • 김영수;이민세;신창섭
    • 한국안전학회지
    • /
    • 제13권2호
    • /
    • pp.116-121
    • /
    • 1998
  • Various flammable vapors as energy source and raw material have been stored, transported in the industries, and accidental leakage of these vapors occurs occasionally. Without an appropriate protection system, flammable vapors can be ignited and serious damage results from them. To reduce the risk caused by explosion, we should know the explosion limit and explosion characteristics. In this study, the maximum explosion pressure, the maximum explosion pressure rise, the effect of temperature and mixing with other vapor were measured in a cylindrical vessel. Experimental results showed that maximum explosion pressure of flammable vapor was about 3.1~$4.2 kg/cm^2$ and it was reached 3.4 times faster than that at explosion limit. The lower explosion limit was coincided well with Le Chateilier's equation, however, upper explosion limit was not.

  • PDF

수소가스 폭발의 물리화학적 특성 연구 (A Study on Physicochemical Characteristics of Hydrogen Gas Explosion)

  • 조영도
    • 한국가스학회지
    • /
    • 제16권1호
    • /
    • pp.8-14
    • /
    • 2012
  • 수소는 온실가스 배출을 저감하기 위한 미래 에너지로 고려되고 있지만, 폭발위험에 대한 문제점을 지니고 있다. 따라서 수소가 미래 에너지로 사용되기 위해서는 폭발위험에 대한 연구가 충분히 이루어져야 한다. 폭발위험은 폭발충격에 대한 이해 즉, 폭발과정에서 압력 상승속도에 대한 분석과 밀접한 관계가 있다. 본 연구에서는 폭발에 영향을 미치는 변수, 즉 연소 전후의 비열비, 화학평형상태에서 최대폭발압력, 그리고 연소속도, 이들 변수가 압력 상승속도에 미치는 영향을 살펴보았다. 화학평형상태에서 최대폭발압력과 연소속도는 압력 상승곡선에 큰 영향을 미치는 것을 알 수 있었고, 미연소 가스의 비열비는 초기압력 상승속도보다 최종압력 상승속도에 더욱 영향을 미치고, 연소가스의 비열비는 반대로 초기압력 상승속도에 더욱 큰 영향을 미치는 것을 알 수 있었다. 연소속도는 실험 데이터로부터 구하였으며 밀폐공간에서 수소가스 폭발에서는 폭연에서 폭굉으로 전이가 일어나기에는 연소속도가 매우 느림을 알 수 있었다.

Methyl Ethyl Ketone Peroxide의 위험성을 판단하기 위한 자연발화, 인화점 및 폭발거동에 관한 기초 연구 (A Study of Characteristics such as Spontaneous Ignition, Flash Point and Explosion Behavior of Methyl Ethyl Ketone Peroxide in ender to Determine its Hazardousness)

  • 정두균;최재욱;이인식;임우섭;김동규
    • 한국안전학회지
    • /
    • 제20권3호
    • /
    • pp.78-83
    • /
    • 2005
  • In this study, the evaluate characteristics of fire and explosion of MEK-PO are subjected to spontaneous ignition, flash point and explosion hazard. The minimum ignition temperature and instantaneous ignition temperature for MEK-PO were $188.5^{\circ}C\;and\;230^{\circ}C\;at\;225{\mu}L$. In addition The flash point for MEK-PO was obtained at $49^{\circ}C$. Furthermore, the maximum explosion pressure and the maximum explosion pressure rising velocity: using MCPVT (mini cup pressure vessel tester) were $10.82kgf/cm^2\;and\;33.72kgf/cm^2{\cdot}s$.

Hydroxypropyl Methyl Cellulose의 분진 폭발특성에 관한 연구 (A Study on Dust Explosion Characteristics of Hydroxypropyl Methyl Cellulose)

  • 임우섭;목연수
    • 한국안전학회지
    • /
    • 제15권4호
    • /
    • pp.95-100
    • /
    • 2000
  • This study was performed in Hartmann type dust explosion apparatus in order to research the dust explosion characteristics of hydroxypropyl methyl cellulose(HPMC): minimum explosive limit, minimum ignition energy, limiting oxygen concentration, maximum explosion pressure, rate of pressure rise, etc. The samples of HPMC dust were distributed into 120-140 mesh, 170-230 mesh and 325 under, and the gap distance of the discharge electrode was setted up at 5mm. The experimental results were obtained as follows: (1) The minimum explosive limit for HPMC dust was founded at 180g/㎥. the minimum ignition energy at 9.8mJ and the limiting oxygen concentration at 12%. (2) The maximum explosion pressure of HPMC dust was $8.1kg/cm^2\;{\cdot}\;$abs at the concentration of $500g/m^3$ and the maximum rate of pressure rise was 203.98 bar/sec at the concentration of $480g/m^3$ for 325 under.

  • PDF

가연성 가스의 폭발특성에 대한 연구 (A Study on The Explosion Characteristics of Flammable Gases)

  • 오규형;김한석;이춘하
    • 한국안전학회지
    • /
    • 제7권3호
    • /
    • pp.66-72
    • /
    • 1992
  • An experimental study was carried out to analyse the explosion characteristics of flammable gas-air mixtures. Used flammable gases were hydrogen, methane, acethylene, ethylene and pro-pane, explosion Pressure, explosoin pressure rising rate, and flame propagation velocity were measured experimentaly. The maximum explosion pressure and rising rate of flammmalbe gas air mixtures were appeared at the range of slightly higher concentration than the stoichiometric concentration. Initial pressure before explosion was controlled from 0.6 to 2.0kg/cm absolutly. Explosion pressure was increased with increment of the initial pressure, and the relationship between initial pressure and explosion pressure was Pe = KPi. The effect of vessel size on explosion characteristics was also analysed In this experiment. Explosion pressure was increased with in-creasing the vessel size, otherwise explosion pressure rising rate was decreased. When we locate a dummy material in vessel explosion pressure was decreased with increasing the dummy volume but exlosion pressure rising rate was increased.

  • PDF

황산의 첨가에 따른 Methyl Ethyl Ketone Peroxide의 폭발압력거동에 관한 연구 (A Study on the Explosion Pressure Behavior of Methyl Ethyl Ketone Peroxide with Addition of Sulfuric Acid)

  • 최재욱;정두균;최일곤
    • 한국가스학회지
    • /
    • 제8권4호
    • /
    • pp.50-54
    • /
    • 2004
  • Methyl Ethyl Ketone Peroxide의 분해폭발로 인한 폭발의 위험성을 평가하기 위하여 소형압력용기 시험기(MCPVT)를 사용하여 실험을 하였다. 그 결과 최대폭발 압력은 MEKPO와 MEKPO에 $98\%H_2SO_4$의 첨가량이 $1\%,\;3\%$$5\%$로 증가할 수록 증가하였으며, 최대폭발압력상승 속도도 증가하였다. 또한 분해개시 압력하에서의 온도는 $H_2SO_4$의 첨가량이 증가할수록 $168.16^{\circ}C,\;126.76^{\circ}C,\;91.21^{\circ}C$$81.25^{\circ}C$로 낮아졌다.

  • PDF

반도체 공정에서 발생하는 혼합분진의 폭발 위험성평가 (Risk Assessment of Explosion of Mixed Dust Generated in Semiconductor Manufacturing)

  • 박창섭;김찬오
    • 전기학회논문지
    • /
    • 제67권3호
    • /
    • pp.474-478
    • /
    • 2018
  • The use of metals such as aluminum and titanium and the related industrial facilities have been continuously increasing to meet the requirements of the improvement of high-tech products due to the development of industry, and explosion of metal dust. Semiconductor process Metal dust is essential, but research is insufficient. The purpose of this study is to identify risk by analyzing the quantitative risk such as maximum explosion pressure and minimum explosion concentration applied international test standard in order to select the semiconductor process facilities handling dust and to predict possible risk of accidents.

도시가스의 폭발 특성에 관한 연구 (A Study on the Explosion Characteristics of City Gas)

  • 최재욱;목연수;박승호
    • 한국안전학회지
    • /
    • 제16권4호
    • /
    • pp.109-114
    • /
    • 2001
  • Explosive characteristics of the city gas were determined by using the gas explosion apparatues. The explosive range is determined between lower explosive limit of 5.0% and upper explosive limit of 15.3% at atmosphere and even though the oxygen concentration is decreased, lower explosive limit is not changed, but upper explosive limit is rapidly decreased. The minimum oxygen for combustion is determined 10%. The maximum explosion pressure is determined 5.72$\textrm{cm}^2$ and the maximum rate of explosion pressure rise is oxygen concentration of 12% to determined 160.12$\textrm{cm}^2{\cdot}$sec.

  • PDF