• 제목/요약/키워드: maximum energy storage density

검색결과 44건 처리시간 0.026초

Low Cost High Power Density Photovoltaic Power Conditioning System with an Energy Storage System

  • Jang, Du-Hee;Han, Sang-Kyoo
    • Journal of Power Electronics
    • /
    • 제12권3호
    • /
    • pp.487-494
    • /
    • 2012
  • A new low cost high power density photovoltaic power conditioning system (PV PCS) with an energy storage system is proposed in this paper. Its high power density and cost effectiveness can be achieved through the unification of the maximum power point tracker and the battery charger/discharger. Despite the reduced power stage, the proposed system can achieve the same performance in terms of maximum power point tracking and battery charging/discharging as the conventional system. When a utility power failure happens, the proposed system cannot perform maximum power point tracking at the UPS mode. However, the predetermined battery voltage near the maximum power point of the PV array can effectively generate a reasonable PV power even at the UPS mode. Therefore, it features a simpler structure, less mass, lower cost, and fewer devices. Finally, to confirm the operation, validity, and features of the proposed system, a theoretical analysis and experimental results from a single phase AC 220Vrms/1.5kW prototype are presented.

$\mu$SMES 코일용 초전도도체의 전류용량에 관한 연구 (Study on Current Capacity of the SC Conductor for $\mu$SMES Coil)

  • 김해종;성기철;조전욱;진홍범;류강식;류경우
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제1권1호
    • /
    • pp.22-27
    • /
    • 1999
  • Recently, small-sized superconducting magnetic storage($\mu$SMES) coils become commercially as an energy storage device for a power conditioner. In design and fabrication of the $\mu$SMES coils, to determine optimum current capacity of the superconducting(SC) conductors is one of the important things. We thus investigated the effect of conductor's current capacity, current density, and stability on the coil's maximum stored energy density in consideration of AC losses and switching device's capacities in a power converter. The results show that the smaller current capacity of the SC conductors is preferred for the $\mu$SMES coils but can increase their induced voltage excessively.

  • PDF

MATLAB/Simulink를 이용한 오프그리드형 고효율 태양광 충전 시스템 설계 (Design of an Off Grid type High efficiency Solar charging system Using MATLAB/Simulink)

  • 미흐렛 가아브레슬라세 마루;김민;변기식;김관형
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2017년도 춘계학술대회
    • /
    • pp.735-737
    • /
    • 2017
  • An Off grid or remote solar electric systems are an energy supply to our home or to our companies without the utility of Grid at all. Off grid solar systems are very important for those who live in remote locations especially for developing countries where getting the electric grid is extremely expensive, inconvenient or for those who doesn't need to pay a monthly bill with the electric bill in general. The main critical components of any solar power system or renewable energy harvesting systems are the energy storage systems and its charge controller system. Energy storage systems are the essential integral part of a solar energy harvesting system and in general for all renewable energy harvesting systems. To provide an optimal solution of both high power density and high energy density at the same time we have to use hybrid energy storage systems (HESS), that combine two or more energy storage technologies with complementary characteristics. In this present work, design and simulation we use two storage systems supercapacitor for high power density and lithium based battery for high energy density. Here the system incorporates fast-response supercapacitors to provide power to manage solar smoothing and uses a battery for load shifting. On this paper discuss that the total energy throughout of the battery is much reduced and the typical thermal stresses caused by high discharge rate responses are mitigated by integrating supercapacitors with the battery storage system. In addition of the above discussion the off grid solar electric energy harvesting presented in this research paper includes battery and supercapacitor management system, MPPT (maximum power point tracking) system and back/boost convertors. On this present work the entire model of off grid electric energy harvesting system and all other functional blocks of that system is implemented in MATLAB Simulink.

  • PDF

직사각형 휜이 부착된 관외착빙형 빙축열조에서 응고과정시 열전달 특성에 관한 연구 (An experimental study on heat transfer characteristics in the ice storage system of ice-on-coil type with rectangular finned tube during freezing process)

  • 권혁용;고재윤;정백영;임장순
    • 태양에너지
    • /
    • 제20권4호
    • /
    • pp.61-67
    • /
    • 2000
  • The purpose of this study is to improve heat transfer by attaching rectangular fins to tube. Experiments were carried out under the following conditions - Aspect ratio$(W_f/R_f)$ is 0.7, 1.2 and 1.8. Temperature conversion between high and low positions of water in the thermal storage appeared because maximum density point of water is about $4^{\circ}C$ and inlet direction of working fluid influenced conductive heat transfer Compared with the unfinned tube(bare tube), the rectangular tube increased the ice thermal storage energy and the ice thermal storage energy was increased as aspect ratio was increased.

  • PDF

에너지 저장장치를 갖는 고 전력밀도 및 저가격형 태양광 인버터 시스템 (High Power Density and Low Cost Photovoltaic Power Conditioning System with Energy Storage System)

  • 금문환;장두희;홍성수;한상규;사공석진
    • 전력전자학회논문지
    • /
    • 제16권6호
    • /
    • pp.587-593
    • /
    • 2011
  • 본 논문에서는 고 전력밀도 및 저가형으로 구성 가능한 새로운 구조의 계통 연계형 태양광 인버터 시스템을 제안한다. 제안 시스템은 태양전지의 최대 전력점 추종기능과 배터리의 충 방전 기능을 단일 전력단으로 구성함으로써, 고 전력밀도 및 저가격형 시스템 구성이 가능하다. 또한, 제안 시스템은 배터리를 링크 캐패시터에 직렬 연결함으로써 링크 캐패시터의 전압 스트레스를 배터리 전압만큼 저감할 수 있으므로 가격저감 효과가 크다. 최종적으로 제안 시스템의 우수성과 신뢰성 검증을 위하여 1.5kW급 태양광 인버터 시스템의 시작품을 제작하였고, 이를 이용한 실험결과를 바탕으로 제안 시스템의 타당성을 검증한다.

Hybrid Capacitors Using Organic Electrolytes

  • Morimoto, T.;Che, Y.;Tsushima, M.
    • 전기화학회지
    • /
    • 제6권3호
    • /
    • pp.174-177
    • /
    • 2003
  • Electric double-layer capacitors based on charge storage at the interface between a high surface area activated carbon electrode and an electrolyte solution are characterized by their long cycle-life and high power density in comparison with batteries. However, energy density of electric double-layer capacitors obtained at present is about 6 Wh/kg at a power density of 500W/kg which is smaller as compared with that of batteries and limits the wide spread use of the capacitors. Therefore, a new capacitor that shows larger energy density than that of electric double-layer capacitors is proposed. The new capacitor is the hybrid capacitor consisting of activated carbon cathode, carbonaceous anode and an organic electrolyte. Maximum voltage applicable to the cell is over 4.2V that is larger than that of the electric double-layer capacitor. As a result, discharged energy density on the basis of stacked volume of electrode, current collector and separator is more than 18Wh/l at a power density of 500W/l.

초전도 전자석의 저장에너지 최대화를 위한 최적설계 (Design Optimization of Superconducting Magnet for Maximum Energy Storage)

  • 김창욱;이향범;박일한
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 A
    • /
    • pp.253-255
    • /
    • 1999
  • In this paper, a shape optimization algorithm of superconducting magnet using finite element method is presented. Since the superconductor loses its superconductivity over the critical magnetic field and critical current density, this material property should be taken into account in the design process. Trial and error approach of repeating the change of the design variables costs much time and it sometimes does not guarantee an optimal design. This paper presents a systematic and efficient design algorithm for the superconducting magnet. We employ the sensitivity analysis based on finite element formulation. As for optimization algorithm, the inequality constraint for the superconducting state is removed by modifying the objective function and the nonlinear equality constraint of constant volume is satisfied by the gradient projection method. This design algorithm is applied to an optimal design problem of a solenoid air-cored superconducting magnet that has a design objective of the maximum energy storage.

  • PDF

Stability and Electronic Properties of the Adsorption of Molecular Hydrogen on Metal-containing Single-walled Carbon Nanotubes

  • Michael, Mananghaya
    • 대한화학회지
    • /
    • 제59권5호
    • /
    • pp.429-433
    • /
    • 2015
  • The binding ability and hydrogen storage capacity of nitrogen doped carbon nanotube with divacancy (4NDCNxNT) that is decorated with transition metals was investigated based on density functional theory calculations. Results indicate that scandium shows an ideal reversible hydrogen binding capability with promising system-weight efficiency compared with other transition metals when functionalized with 4ND-CNxNT. The (Sc/4ND)10-CNxNT can store up to 50H2 molecules, corresponding to a maximum gravimetric density of 5.8 wt%. Detailed structural stability and electronic properties were reported as hydrogen molecules were absorbed. It takes about 0.16 eV/H2 to add one H2 molecule, which assures reversible storage of H2 molecules under ambient conditions.

Zn-Br 레독스 흐름 전지용 전해액에 관한 연구 (Study on the Electrolyte for Zn-Br Redox Flow Battery)

  • 최호상;오용환;유철휘;황갑진
    • 한국수소및신에너지학회논문집
    • /
    • 제24권4호
    • /
    • pp.347-352
    • /
    • 2013
  • Four types of electrolyte were tested for the application as an electrolyte in the Zn-Br redox flow battery. Electrolyte was consist of $ZnBr_2$ (electrolyte number 1), $ZnBr_2+KCl$ (electrolyte number 2), $ZnBr_2+KCl+NH_4Br$ (electrolyte number 3) and $ZnBr_2+KCl+EMPBr(C_7H_{16}BF_4N)$ (electrolyte number 4). The each electrolyte property was measured by CV (cyclic voltammetry) method. The different between the potential of anodic and cathodic maximum current density in a CV experiment (${\Delta}E_P$) was 0.89V, 0.89V, 1.06V and 0.61V for the electrolyte number 1, 2, 3 and 4, respectively. The electrolyte involved KCl increased conductivity which was appeared by anodic and cathodic maximum current density in a CV experiment. It was estimated that the electrolyte of number 3 ($ZnBr_2+KCl+NH_4Br$) and number 4 ($ZnBr_2+KCl+EMPBr$) could be suitable as an electrolyte in the Zn-Br redox flow battery with non-appeared bubble, non-Br formation and high anodic-cathodic maximum current density.

35 kWh급 초전도 플라이휠 에너지 저장 시스템 설계 및 제작 (Design and Construction of 35 kWh Class Superconductor Flywheel Energy Storage System)

  • 정세용;한영희;박병준;한상철
    • Progress in Superconductivity
    • /
    • 제14권1호
    • /
    • pp.60-65
    • /
    • 2012
  • A superconductor flywheel energy storage system (SFES) is an electro-mechanical battery which transforms electrical energy into mechanical energy for storage, and vice versa. A 35 kWh class SFES module was designed and constructed as part of a 100kWh/1MW class SFES composed of three 35 kWh class SFES modules. The 35 kWh class SFES is composed of a main frame, superconductor bearings, a composite flywheel, a motor/generator, electro-magnetic bearings, and a permanent magnet bearing. The high energy density composite flywheel is levitated by the permanent magnet bearing and superconductor bearings, while being spun by the motor/generator, and the electro-magnetic bearings are activated while passing through the critical speeds. Each of the main components was designed to provide maximum performance within a space-limited compact frame. The 35 kWh class SFES is designed to store 35 kWh, with a 350 kW charge/discharge capacity, in the 8,000 ~ 12,000 rpm operational speed range.