Browse > Article
http://dx.doi.org/10.5012/jkcs.2015.59.5.429

Stability and Electronic Properties of the Adsorption of Molecular Hydrogen on Metal-containing Single-walled Carbon Nanotubes  

Michael, Mananghaya (De La Salle University)
Publication Information
Abstract
The binding ability and hydrogen storage capacity of nitrogen doped carbon nanotube with divacancy (4NDCNxNT) that is decorated with transition metals was investigated based on density functional theory calculations. Results indicate that scandium shows an ideal reversible hydrogen binding capability with promising system-weight efficiency compared with other transition metals when functionalized with 4ND-CNxNT. The (Sc/4ND)10-CNxNT can store up to 50H2 molecules, corresponding to a maximum gravimetric density of 5.8 wt%. Detailed structural stability and electronic properties were reported as hydrogen molecules were absorbed. It takes about 0.16 eV/H2 to add one H2 molecule, which assures reversible storage of H2 molecules under ambient conditions.
Keywords
Binding energy; Density functional theory; Porphyrin defects; Scandium; Single-walled carbon nanotubes;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Sudan, P.; Züttel, A.; Mauron, P.; Emmenegger, C.; Wenger, P.; Schlapbach, L. Carbon, 2003, 41, 2377.   DOI
2 Henwood, D.; Carey, J. D. Phys. Rev. B., 2007, 75, 245413.   DOI
3 Tibbetts, G. G.; Meisner, G. P.; Olk, C. H. Carbon, 2001, 39, 2291.   DOI
4 Mananghaya, M. J. Mol. Liq. 2015, Article in Press.
5 Mananghaya, M.; Rodulfo, E.; Santos, G. N.; Villagracia, A. R. J. Nanotechnol. 2012, 2012, 780815.
6 Terrones, M.; Terrones, H.; Grobert, N. et al., App. Phys. Lett. 1999, 75, 3932.   DOI
7 Czerw, R.; Terrones, M.; Charlier, J. C. et al., Nano Lett. 2001, 1, 457.   DOI
8 Terrones, M.; Ajayan, P. M.; Banhart, F. et al., App. Phys. A 2002, 74, 355.
9 Golberg, D.; Dorozhkin, P. S.; Bando, Y. et al., App. Phys. A 2003, 76, 499.   DOI
10 Villalpando-Páez, F.; Romero, A. H.; Muñoz-Sandoval, E.; Martínez, L. M.; Terrones, H.; Terrones, M. Chem. Phys. Lett. 2004, 386, 137.   DOI
11 Ye, Y.; Ahn, C. C.; Witham, C.; Fultz, B.; Liu, J.; Rinzler, A. G. et al., App. Phys. Lett. 2005, 74, 2307.
12 Suenaga, K.; Johansson, M. P.; Hellgren, N. et al., Chem. Phys. Lett. 1999, 300, 695.   DOI
13 Lim, S. H.; Elim, H. I.; Gao, X. Y. et al., Phys. Rev. B 2006, 73, 045402.   DOI
14 Mananghaya, M. J. Korean Chem. Soc. 2012, 56, 34.   DOI
15 Mananghaya, M. J. Chem. Sci. 2014, 126, 1737.   DOI
16 Mananghaya, M. J. Chem. Sci. 2015, 127, 751.   DOI
17 Mananghaya, M. J. Korean Chem. Soc. 2015, 59, 1.
18 Park, N.; Hong, S.; Kim, G.; Jhi, S. H. J. Am. Chem. Soc. 2007, 129, 8999.   DOI
19 Yu, S. S.; Wen, Q. B.; Zheng, W. T.; Jiang, Q. Nanotechnology, 2007, 18, 165702.   DOI
20 Qiao, L.; Zheng, W. T.; Xu, H.; Zhang, L.; Jiang, Q. J. Chem. Phys. 2007, 126, 164702.   DOI
21 Sun, Q.; Wang, Q.; Jena, P.; Kawazoe, Y. J. Am. Chem. Soc. 2005, 129, 14582.
22 Mananghaya, M. Int. J. Hydr. En. 2015, 40, 9352.   DOI
23 Delley, B. J. Chem. Phys. 1990, 92, 508.   DOI
24 Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.   DOI
25 Monkhorst, H. J.; Pack, J. D. Phys Rev B 1976, 13, 5188.   DOI
26 Choi, H. C.; Bae, S. Y.; Park, J. et al., App. Phys. Lett. 2004, 85, 5742.   DOI
27 Terrones, M.; Kamalakaran, R.; Seeger, T.; Ruhle, M. Chem. Commun. 2000, 23, 2335.
28 Droppa, R.; Ribeiro, C. T. M.; Zanatta, A. R.; Dos Santos, M. C.; Alvarez, F. Phys. Rev. B 2004, 69, 045405.   DOI
29 Villalpando-Paez, F.; Zamudio, A.; Elias, A. L. et al., Chem. Phys. Lett. 2006, 424, 345.   DOI
30 Zhao, J.; Ding, Y.; Wang, X. G.; Cai, Q.; Wang, X. G. Dia. Rel. Mat., 2011, 20, 36.   DOI
31 Mananghaya, M. Bull. Korean Chem. Soc. 2014, 35, 253.   DOI
32 Mananghaya, M.; Rodulfo, E.; Santos, G. N.; Villagracia, A. R. J. Nanomater. 2012, 2012, 104891.