• 제목/요약/키워드: maximum daily rainfall

검색결과 143건 처리시간 0.026초

경북지방(慶北地方)의 강수(降水) 및 무강수(無降水) 현상(現象) 조사(調査) 분석(分析) (A Studay on the Rainfall and Drought Days in Kyupgpook Area)

  • 서승덕;전국진
    • Current Research on Agriculture and Life Sciences
    • /
    • 제5권
    • /
    • pp.143-157
    • /
    • 1987
  • In order to determine the design precipitation, the most probable daily precipitation and annual precipitation at every spot are calculated and iso - precipitation line are drawn. Probability of precipitation and drought phenomena of each gage station are analyzied by the method of frequency analysis from the statistical conceptions. The results summarized in this study are as the follows. 1. Annual mean precipitation in kyungpook area are 1044 mm, about 115 mm less than annual mean precipitation of Korea amounts to l1S9mm, and found to regionally unequal. 2. Monthly mean rainfall of July is 242.2mm, 23.2%, August 174.2mm, 16.7%, June 115mm, 11% and September 114.2mm, 10.9% and Rainfall depth of July-August are more than 40% of annual precipition. This shows notable summer rainy weather by typoon and low pressure storm and seasonal unbalance of water supply. 3. The relation among the maximum precipi.tation per day, per two continuous days and per three contnous days are caculated and the latter is found 31.0% increased rate of the first and the last 48.2% increased rate of first. 4. Probability precipitation in Kyungpook area are shown as 9.0%(5 year), 13.3%(10 year), 17.7%(20 year), 23.1%(50 year), 27.0%(100 year) and 31.1%(200 year) increased rate of each recurrence year compared with observed average annual precipitation. 5. From annual precipitation and maximum daily rainfall data probability of precipitation and precipitation isohyetal line are derived which shown as Table 11 and Fig. 8. 6. Drought days are divided 6 class and analysed results are shown on table 12. Average occurrence time of 10-14 continuous drought days are 2.3 time per year, 15-19 days are 0.9 time per year, 20-24 days are one per six years, 30-34 days are once per nine years and over than 35days are once per 25 years.

  • PDF

기후정보와 지리정보를 결합한 계층적 베이지안 모델링을 이용한 재현기간별 일 강우량의 공간 분포 및 불확실성 (Spatial distribution and uncertainty of daily rainfall for return level using hierarchical Bayesian modeling combined with climate and geographical information)

  • 이정훈;이옥정;서지유;김상단
    • 한국수자원학회논문집
    • /
    • 제54권10호
    • /
    • pp.747-757
    • /
    • 2021
  • 극한 강우의 정량화는 홍수방어계획의 수립에 대단히 중요하며 극한 강우의 일반적인 척도는 T-년 재현기간으로 표현된다. 본 연구에서는 기후정보와 지리정보가 결합된 계층적 베이지안 모형을 이용하여 재현기간별 일 강우량의 공간 분포 및 불확실성을 추정하는 방법을 제시하고 이를 서울-인천-경기 지역에 적용하였다. 한국 기상청에서 운영 중인 서울-인천-경기 지역의 6개 종관기상관측소의 연 최대 일 강우량이 일반화된 극치 분포에 적합되었다. 지점 빈도해석과 지수 홍수법을 이용한 지역 빈도해석으로부터 도출된 재현기간별 일 강우량과의 비교를 통하여 제안된 방법의 적용성 및 신뢰도를 살펴보았다. 모든 지점과 모든 재현기간에서 지수홍수법에 의한 지역 빈도해석의 불확실성이 가장 큰 것으로 나타났으며, 계층적 베이지안 모형에 의한 지역 빈도해석의 신뢰도가 가장 높은 것을 확인하였다. 제안된 방법은 서울-인천-경기 지역 및 공간적인 크기가 유사한 다른 지역에서 다양한 지속기간에 대한 확률강우량 지도를 생성하는데 사용될 수 있을 것이다.

Characteristics of Andong Dam Inflow during Non-rainfall Season

  • Park, Gey-Hwan;Park, Ki-Bum;Chang, In-Soo
    • 한국환경과학회지
    • /
    • 제27권10호
    • /
    • pp.845-851
    • /
    • 2018
  • In this study, the runoff characteristics of the non-rainfall period were examined using daily rainfall data from 1977 to 2017 and the data of runoff into the dam. Results showed that, the mean runoff decreases with longer non-rainfall periods in the Andong dam basin. The correlation coefficient between non-rainfall days and average runoff reaches 0.85. The results of the analysis of the runoff characteristics during the non-rainfall period, based on the preceding rainfall of Andong dam are as follows. The runoff characteristics of the entire non-rainfall period, shows that, for a rainfall of 1.0 mm or less, the runoff height was larger than the rainfall size and the base runoff larger. The correlation between the antecedent rainfall and runoff height was reached as high as 0.9864 in the 30 ~ 50 mm interval of the antecedent rainfall period, and this is the interval where the linearity of rainfall and runoff was at its maximum in the Andong dam basin. The correlation between the antecedent rainfall and the runoff height reached 0.92 for rainfalls of 100.0 mm. However, for rainfalls of 100.0 mm greater, the correlation between the antecedent rainfall and runoff height during the rainfall period was 0.64, which is relatively small. In this study, we investigated the runoff characteristics of the rainfall period in the Andong dam watershed. As a result, it was confirmed that the mean runoff decreased with rainfall duration. The linearity was found to be weak for rainfall events greater than 100.0 mm. The results of this study can be used as data for water balance analysis and for formulating a water supply plan to establish water resource management of Andong dam.

Effect of land use and urbanization on groundwater recharge in metropolitan area: time series analysis of groundwater level data

  • Chae, Gi-Tak;Yun, Seong-Taek;Kim, Dong-Seung;Choi, Hyeon-Su
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2004년도 임시총회 및 추계학술발표회
    • /
    • pp.113-114
    • /
    • 2004
  • In order to classify the groundwater recharge characteristics in an urban area, a time series analysis of groundwater level data was performed. For this study, the daily groundwater level data from 35 monitoring wells were collected for 3 years (Fig. 1). The use of the cross-correlation function (CCF), one of the time series analysis, showed both the close relationship between rainfall and groundwater level change and the lag time (delay time) of groundwater level fluctuation after a rainfall event. Based on the result of CCF, monitored wells were classified into two major groups. Group I wells (n=10) showed a fast response of groundwater level change to rainfall event, with a delay time of maximum correlation between rainfall and groundwater level near 1 to 7 days. On the other hand, the delay time of 17-68 days was observed from Group II wells (n=25) (Fig. 1). The fast response in Group I wells is possibly caused by the change of hydraulic pressure of bedrock aquifer due to the rainfall recharge, rather than the direct response to rainfall recharge.

  • PDF

농촌유역에서의 초기강우손실 특성분석과 계수 산정식 개발 - 금강.삽교천 중소유역을 중심으로- (Characteristic Analysis of the Coefficient of Initial Abstraction and Development of its Formular in the Rural Watersheds - for the Small-Medium Watersheds in the Geum and Sapkyo River -)

  • 김태철;이정선
    • 한국농공학회논문집
    • /
    • 제50권6호
    • /
    • pp.3-12
    • /
    • 2008
  • It is important to estimate accurate effective rainfall to analyse flood flow and long-term runoff for the rational planning, design, and management of water resource. The initial abstraction is also important to estimate effective rainfall. The Soil Conservation Service (SCS) has developed a procedure and it has been most commonly applied to estimate effective rainfall. But the SCS method still has weak points, because of unnatural assumptions such as antecedent moisture conditions and initial abstraction. The coefficient of initial abstraction(K) is depending on the soil moisture condition and antecedent rainfall. The maximum storage capacity of Umax which is calibrated by stream flow data in the proposed watershed was derived from the DAWAST(DAily WAtershed STreamflow) model. The values of K obtained from 69 storm events at the five watersheds are ranging from 0.133 to 0.365 and its mean value is 0.207. Effective rainfall could be estimated more reasonably by introducing new concept of initial abstraction. The equation of $K=0.076Sa^{0.255}$ was recommended instead of 0.2 and it could be applicable to the small-medium rural watersheds.

2018년 8월 6일 발달한 대류계에 의해 발생한 강릉지역의 집중호우 사례 연구 (A Case Study of Heavy Rainfall by A Developed Convective System over Gangneung on 6 August 2018)

  • 박성규;이재규
    • 대기
    • /
    • 제30권2호
    • /
    • pp.125-139
    • /
    • 2020
  • On 6 August 2018, heavy rainfall of daily precipitation of more than 200 mm occurred in the Yeong-dong coastal area, and especially, 1-hour precipitation of 93 mm (0251~0351 LST (local standard time) 6 August) at Gangneung station, ranked second in the history of meteorological survey of the station. In this study, this heavy rainfall case over the Gangneung area would be studied to investigate the process in which the heavy rainfall occurred. A developed ridge moved toward the Yeong-dong coastal area from the Maritime Province in Russia. The approaching of the ridge led to the northeasterly cold wind over the coastal region, causing the collision between the incoming northeasterly cold wind, and the humid and warm (convectively unstable) air located over the Yeong-dong area. This collision led to a strong convergence (maximum -206 × 10-5 s-1) at 925 hPa level over the vicinity of Gangneung at 0300 LST 6 August, resulting updraft of up to about 4.4 m s-1 at 700 hPa level over the area. This strong updraft forced to lift rapidly the convectively unstable, warm and humid air layer, located over the vicinity of Gangneung, leading to the heavy rainfall (1-hour precipitation of 93 mm) over the area.

A data-adaptive maximum penalized likelihood estimation for the generalized extreme value distribution

  • Lee, Youngsaeng;Shin, Yonggwan;Park, Jeong-Soo
    • Communications for Statistical Applications and Methods
    • /
    • 제24권5호
    • /
    • pp.493-505
    • /
    • 2017
  • Maximum likelihood estimation (MLE) of the generalized extreme value distribution (GEVD) is known to sometimes over-estimate the positive value of the shape parameter for the small sample size. The maximum penalized likelihood estimation (MPLE) with Beta penalty function was proposed by some researchers to overcome this problem. But the determination of the hyperparameters (HP) in Beta penalty function is still an issue. This paper presents some data adaptive methods to select the HP of Beta penalty function in the MPLE framework. The idea is to let the data tell us what HP to use. For given data, the optimal HP is obtained from the minimum distance between the MLE and MPLE. A bootstrap-based method is also proposed. These methods are compared with existing approaches. The performance evaluation experiments for GEVD by Monte Carlo simulation show that the proposed methods work well for bias and mean squared error. The methods are applied to Blackstone river data and Korean heavy rainfall data to show better performance over MLE, the method of L-moments estimator, and existing MPLEs.

유역모형을 이용한 비점배출계수 적용성 평가 (Evaluation of Applicability for Nonpoint Discharge Coefficient using Watershed Model)

  • 이은정;김태근
    • 환경영향평가
    • /
    • 제21권3호
    • /
    • pp.339-352
    • /
    • 2012
  • Total maximum daily load have been implemented and indicated that nonpoint discharge coeffients in flow duration curve were 0.50 of Normal flow duration ($Q_{185}$) and 0.15 of low flow duration($Q_{275}$). By using SWAT, nonpoint discharge coefficients are studied with the conditions of the instream flow and the rainfall in two study areas. The nonpoint discharge coefficient average of BOD and TP for normal flows duration in 3 years are 0.32~0.36 and 0.28~0.31. For the low flow duration, the nonpoint discharge coefficient avergae of BOD and TP were 0.10~0.12 and 0.10~0.11. These are lower than the coefficients of total maximum load regulation. There are big differences between one of regulation and one of SWAT for the normal flow duration. With the consideration of rainfall condition, the nonpoint discharge coefficient of flood flow duration are influenced on the amount of rainfalls. However, the nonpoint discharge coefficients of normal flow duration and low flow duration are not effected by the rainfall condition. Since the spatial distribution and geomorphological characteristics could be considered with SWAT, the estimation of nonpoint discharge coefficient in watershed model is better method than the use of the recommended number in the regulation.

일강우자료를 이용한 강우사상의 변동 특성 분석 (Characteristic Change Analysis of Rainfall Events using Daily Rainfall Data)

  • 오태석;문영일
    • 한국수자원학회논문집
    • /
    • 제42권11호
    • /
    • pp.933-951
    • /
    • 2009
  • 지구온난화에 따른 기후변화가 우리나라의 물순환 과정에 영향을 미칠 수 있다. 강우는 여러 기상인자들과 복잡한 영향을 주고 받으며 발생한다. 따라서 강우는 물순환 과정에서 기후변화에 따른 영향을 크게 받는 인자 중의 하나이다. 본 연구에서는 강우특성을 나타낼 수 있는 여러 시계열 자료를 구축하였다. 또한 강우의 발생 시계열을 연별, 계절별 및 월별로 구성하여 분석하였다. 분석 방법은 시계열 자료의 평균과 표준편차의 변동성 분석과 경향성 분석을 수행하였다. 또한, 최근 10년 동안에 강우특성의 변화에 대한 상대오차를 계산하여 과거 자료들과 비교하였다. 분석 결과에서 강우자료의 고유 특성인 무작위성에 의하여 뚜렷한 통계적 결과는 나타나지 않았다. 그러나 일반적으로 최근 10년간 강우량은 증가하였으며, 강우일수는 감소하는 추세를 보였다. 또한, 계절별과 월별에 따른 강우특성의 변화가 다르게 나타나고 있음을 확인할 수 있다.

소규모 지역에 대한 강우의 공간변화도 분석 (Analysis on Spatial Variability of Rainfall in a Small Area)

  • 김종필;김원;김동구;이찬주
    • 한국수자원학회논문집
    • /
    • 제48권11호
    • /
    • pp.905-913
    • /
    • 2015
  • 본 연구에서는 소규모 지역 내 6대의 우량계를 설치하여 조밀한 강우 관측망을 구축하고 이를 통하여 소규모 지역에 대한 강우의 공간적 변화도를 분석하고자 하였다. 우량계는 60m의 동일한 간격으로 배치하고 총 54일간의 강우관측을 수행하였다. 이물질로 인하여 오작동을 일으킨 1대 우량계를 제외한 5대의 우량계를 이용하여 50일간 강수량에 대하여 분석을 수행하였다. 각 우량계에 관측된 50일간 누적강우량 비교결과 최대 약 38.5mm의 차이를 나타내었다. 상관성 분석결과 일강우량은 소규모 지역에서 매우 일관성 있는 자료를 보여주고 있으나 1시간 이하 강우량 시계열에서는 차이가 있음을 확인할 수 있었다. 공간 변화도 분석결과, 변동계수가 시강우량의 경우 최대 약 224%, 일강우량의 경우 최대 약 91%로 나타났다. 면적강우량 불확실성 분석결과, 4대의 우량계만을 이용할 경우 대상지역에 대하여 95% 이상의 정확도를 확보하기 힘든 것으로 나타났다. 향후 보다 신뢰성 있는 홍수예보와 효율적인 유역관리를 위해서는 점 중심의 강우 관측이 아닌 면적 강우 관측방법의 개발이 필요할 것으로 생각된다.